16,973 research outputs found

    Microstructure of hot-pressed Al2O3-Si3N4 mixtures as a function of holding temperature

    Get PDF
    Powder mixtures of 40 m/o Si3N4-60 m/o Al2O3 were hot-pressed at 4000 psi at various holding temperatures from 1100 C to 1700 C. Scanning Electron Microscopy and Transmission Electro Microscopy results were correlated to X-ray phase analysis and density measurements. The progressively developed microstructure was used to interpret the densification behavior of SiAlON. Photomicrographs of microstructures are shown

    Effects of pressure and temperature on hot pressing a sialon

    Get PDF
    Mixed powders (60 m/o Al2O3-40 m/o Si3N4) were hot pressed at temperatures and pressures from 1360 to 1750 C and 3.5 to 27.5 MPa (0.5 to 4.0 ksi). Fully dense sialon bodies are obtainable at temperatures and pressures as low as 1550 C and 0.5 ksi. The fully dense bodies contain Beta prime and x-phase. There is some evidence that plastic deformation has contributed to densification

    High Dynamic Range RF Front End with Noise Cancellation and Linearization for WiMAX Receivers

    Get PDF
    This research deals with verification of the high dynamic range for a heterodyne radio frequency (RF) front end. A 2.6 GHz RF front end is designed and implemented in a hybrid microwave integrated circuit (HMIC) for worldwide interoperability for microwave access (WiMAX) receivers. The heterodyne RF front end consists of a low-noise amplifier (LNA) with noise cancellation, an RF bandpass filter (BPF), a downconverter with linearization, and an intermediate frequency (IF) BPF. A noise canceling technique used in the low-noise amplifier eliminates a thermal noise and then reduces the noise figure (NF) of the RF front end by 0.9 dB. Use of a downconverter with diode linearizer also compensates for gain compression, which increases the input-referred third-order intercept point (IIP3) of the RF front end by 4.3 dB. The proposed method substantially increases the spurious-free dynamic range (DRf) of the RF front end by 3.5 dB

    The dissociation of subjective measures of mental workload and performance

    Get PDF
    Dissociation between performance and subjective workload measures was investigated in the theoretical framework of the multiple resources model. Subjective measures do not preserve the vector characteristics in the multidimensional space described by the model. A theory of dissociation was proposed to locate the sources that may produce dissociation between the two workload measures. According to the theory, performance is affected by every aspect of processing whereas subjective workload is sensitive to the amount of aggregate resource investment and is dominated by the demands on the perceptual/central resources. The proposed theory was tested in three experiments. Results showed that performance improved but subjective workload was elevated with an increasing amount of resource investment. Furthermore, subjective workload was not as sensitive as was performance to differences in the amount of resource competition between two tasks. The demand on perceptual/central resources was found to be the most salient component of subjective workload. Dissociation occurred when the demand on this component was increased by the number of concurrent tasks or by the number of display elements. However, demands on response resources were weighted in subjective introspection as much as demands on perceptual/central resources. The implications of these results for workload practitioners are described

    Comparison of heat-transfer test data for a chordwise-finned, impingement-cooled turbine vane tested in a four-vane cascade and a research engine

    Get PDF
    The heat-transfer characteristics of a chordwise-finned, impingement-cooled vane were investigated in both a modified J-57 research engine and a four-vane cascade. The data were compared by a correlation of temperature difference ratio with coolant- to gas-flow ratio and also by two modifications of this correlation. The results indicated that the cascade vane temperature data can generally be used to represent the engine vane temperature data. A discussion of engine and cascade gas-side heat-transfer coefficients is also presented. A redesign of the vane leading edge could significantly increase the potential turbine-inlet temperature operating limit

    Some Like It Hot, Some Like It Warm: Phenotyping To Explore Thermotolerance Diversity

    Get PDF
    Plants have evolved overlapping but distinct cellular responses to different aspects of high temperature stress. These responses include basal thermotolerance, short- and long-term acquired thermotolerance, and thermotolerance to moderately high temperatures. This ‘thermotolerance diversity’ means that multiple phenotypic assays are essential for fully describing the functions of genes involved in heat stress responses. A large number of genes with potential roles in heat stress responses have been identified using genetic screens and genome wide expression studies. We examine the range of phenotypic assays that have been used to characterize thermotolerance phenotypes in both Arabidopsis and crop plants. Three major variables differentiate thermotolerance assays: (1) the heat stress regime used, (2) the developmental stage of the plants being studied, and (3) the actual phenotype which is scored. Consideration of these variables will be essential for deepening our understanding of the molecular genetics of plant thermotolerance

    Wave propagation and earth satellite radio emission studies

    Get PDF
    Radio propagation studies of the ionosphere using satellite radio beacons are described. The ionosphere is known as a dispersive, inhomogeneous, irregular and sometimes even nonlinear medium. After traversing through the ionosphere the radio signal bears signatures of these characteristics. A study of these signatures will be helpful in two areas: (1) It will assist in learning the behavior of the medium, in this case the ionosphere. (2) It will provide information of the kind of signal characteristics and statistics to be expected for communication and navigational satellite systems that use the similar geometry

    Simulation-based evaluation of defuzzification-based approaches to fuzzy multi-attribute decision making

    Get PDF
    This paper presents a simulation-based study to evaluate the performance of 12 defuzzification-based approaches for solving the general fuzzy multiattribute decision-making (MADM) problem requiring cardinal ranking of decision alternatives. These approaches are generated based on six defuzzification methods in conjunction with the simple additive weighting (SAW) method and the technique for order preference by similarity to the ideal solution method. The consistency and effectiveness of these approaches are examined in terms of four new objective performance measures, which are based on five evaluation indexes. The Simulation result shows that the approaches, which are capable of using all the available information on fuzzy numbers, effectively in the defuzzification process, produce more consistent ranking outcomes. In particular, the SAW method with the degree of dominance defuzzification is proved to be the overall best performed approach, which is, followed by the SAW method with the area center defuzzification. These findings are of practical significance in real-world settings where the selection of the defuzzification-based approaches is required in solving the general fuzzy MADM problems under specific decision contexts
    corecore