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Simulation-Based Evaluation of
Defuzzification-Based Approaches to
Fuzzy Multiattribute Decision Making

Hepu Deng and Chung-Hsing Yeh, Senior Member, IEEE

Abstract—This paper presents a simulation-based study to eval-
uate the performance of 12 defuzzification-based approaches for
solving the general fuzzy multiattribute decision-making (MADM)
problem requiring cardinal ranking of decision alternatives. These
approaches are generated based on six defuzzification methods
in conjunction with the simple additive weighting (SAW) method
and the technique for order preference by similarity to the ideal
solution method. The consistency and effectiveness of these ap-
proaches are examined in terms of four new objective performance
measures, which are based on five evaluation indexes. The sim-
ulation result shows that the approaches, which are capable of
using all the available information on fuzzy numbers effectively
in the defuzzification process, produce more consistent ranking
outcomes. In particular, the SAW method with the degree of
dominance defuzzification is proved to be the overall best per-
formed approach, which is followed by the SAW method with
the area center defuzzification. These findings are of practical
significance in real-world settings where the selection of the de-
fuzzification-based approaches is required in solving the general
fuzzy MADM problems under specific decision contexts.

Index Terms—Defuzzification, fuzzy multiattribute decision
making (MADM), performance measure, simulation.

I. INTRODUCTION

FUZZY multiattribute decision making (MADM) has been
developed for handling the problem of inherent uncertainty

and imprecision in human decision-making processes involving
multiple attributes [1], [2], [7], [8], [15], [21], [22], [25], [26],
[33], [39], [41], [47], [48]. This uncertainty and imprecision
may come from various factors such as: 1) incomplete in-
formation; 2) abundant information; 3) conflicting evidence;
4) ambiguous information; and 5) subjective information [11],
[15], [49], [61], [62]. To effectively tackle this problem, a
fuzzy set theory, first proposed by Zadeh [58], has been widely
used due to its capability in modeling subjective and imprecise
human decision behaviors [20]–[22], [26], [27], [45], [55]–[57],
[61], [62].

A fuzzy MADM is concerned with ranking the decision alter-
natives with respect to multiple, usually conflicting, attributes
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and subattributes, if present in a fuzzy environment [5], [11],
[14], [15], [37]. It usually involves: 1) determining the fuzzy
attribute’s weights and the fuzzy ratings of alternatives with
respect to each attribute or subattribute and 2) aggregating the
fuzzy weights and the fuzzy ratings as an overall fuzzy utility
for assessing the overall performance of each alternative across
all the attributes and subattributes [10], [11], [14], [15], [31],
[37], [47].

Most fuzzy MADM approaches based on multiattribute util-
ity theory [11], [14], [32] require comparing the aggregated
fuzzy utilities of alternatives, on which the cardinal ranking
of these alternatives can be based [11], [12], [15], [28], [43],
[49], [50], [52]. Numerous fuzzy utility comparison approaches
have been developed in this regard [5], [9], [10], [13], [18]–
[20], [41], [45], [46], [53]. However, there is no best approach
for the general fuzzy MADM problem, and most approaches
suffer from various drawbacks such as: 1) lack of sensitivity
when comparing similar fuzzy numbers; 2) counterintuitive
outcomes in certain circumstances; and 3) complex computa-
tional processes [5], [12], [13], [15], [34], [41].

To avoid these drawbacks in fuzzy MADM, defuzzification
is widely used as an effective means for aggregating the fuzzy
attributes’ weights and fuzzy ratings of the alternatives [6], [11],
[15], [16], [18], [29], [46], [49], [50]. Numerous defuzzification
methods have been developed, and there is no best method.
Often, each defuzzification method is used and examined in a
specific decision context [12], [15], [16], [49], [58]. However,
the relative performance of these methods in solving the general
fuzzy MADM problem is not clear. This makes the selection
of a specific defuzzification method complex and difficult [6],
[42]. To effectively support fuzzy MADM decisions making,
a comparative study of these defuzzification methods with
respect to their relative performance in ranking decision alter-
natives is obviously desirable [6], [42].

This paper presents a simulation-based comparative study
for evaluating the relative performance of six commonly used
defuzzification methods in terms of four new objective per-
formance measures. To generate the ranking outcomes for
the comparison, each defuzzification method is used with
two most widely used MADM methods: the simple additive
weighting (SAW) method [4], [11], [32], [38], [40] and the
technique for order preference by similarity to ideal solution
(TOPSIS) method [11], [16], [17], [50], [51]. Randomly gener-
ated triangular fuzzy numbers are used to represent the decision
maker’s (DM) fuzzy assessments on the attribute weights and
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the ratings of the alternatives with respect to each attribute. The
ranking of the alternatives that resulted from the use of each
defuzzification-based approach is compared with each other
and also against the efficient fuzzy weighted average (EFWA)
approach [12], [18], [30], [46], [53] based on the four new ob-
jective performance measures. As a result, 12 defuzzification-
based approaches are examined, and the relative performance
of these defuzzification-based approaches in fuzzy MADM is
determined.

In the following sections, we first briefly describe six com-
monly used defuzzification methods that lead to the develop-
ment of 12 defuzzification-based approaches in fuzzy MADM.
We then present the four new objective evaluation measures
for evaluating the relative performance of these defuzzification-
based approaches in solving the general fuzzy MADM prob-
lem. Finally, we present the simulation results and discuss
the observations and their implications derived from the com-
parative study.

II. DEFUZZIFICATION-BASED APPROACHES

A. Formulation of the General Fuzzy MADM Problem

A general fuzzy MADM problem requiring a cardinal rank-
ing usually consists of a finite set of alternatives Ai (i =
1, 2, . . . , n), which are to be evaluated and ranked based on a
given set of attributes Cj (j = 1, 2, . . . ,m) and subattributes
Cjk (k = 1, 2, . . . , pj), if present. Fuzzy assessments are to
be made for determining the ratings of the alternatives and
the attribute weights. The ratings (xij or yjk) reflect the de-
gree to which the alternative Ai satisfies each attribute Cj or
subattribute Cjk, which forms the decision matrix X (xij)
or Y cj (yjk). The attribute weights (wj or wjk) represent
how important each attribute Cj or subattribute Cjk is with
respect to the overall objective of the problem, which de-
termines the weighting vectors W = (w1, w2, . . . , wm) and
Wj = (wj1, wj2, . . . , wjk) for the attributes and subattributes,
respectively.

A weighted fuzzy performance matrix can be obtained by
aggregating the fuzzy decision matrix and the fuzzy weighting
vector based on the fuzzy arithmetic operations [11], [31],
[62], as

Z =




w1x11 w2x12 . . . wmx1m

w1x21 w2x22 . . . wmx2m

. . . . . . . . . . . .
w1xn1 w2xn2 . . . wmxnm


 . (1)

If the attribute Cj is consists of subattributes Cjk, the
decision vector (x1j , x2j , . . . , xnj) across all the alternatives
with respect to the attributes Cj in (1) is first determined
by (2). Equation (2) is a normalized value function for the
attribute Cj with a multilevel hierarchy. The value function is
the multiplication of the weighting vector Wj for its lower level
subattributes Cjk and their corresponding decision matrix YCj

.
It is normalized to make all the vectors of the decision matrix
for the attributes at the highest level comparable

(x1j , x2j , . . . , xnj) =
WjYCj

pj∑
k=1

wjk

. (2)

Clearly, although the case of a two-level hierarchy is exem-
plified in this paper, the use of the normalized value function in
aggregating the assessments from the lower level subattributes
can be applied to the other fuzzy MADM problems involving
multilevel attributes.

B. Defuzzification Methods

In solving fuzzy MADM problems, defuzzification is of-
ten applied to the weighted fuzzy performance matrix as
given in (1), in order to avoid the complex and unreliable
process of comparing the fuzzy utilities [12], [16], [36], [37],
[41], [46]. To help present the comparative study, the six
most commonly used defuzzification methods are described
below, including: 1) right value; 2) degree of optimality;
3) α-cut; 4) fuzzy integral; 5) area center; and 6) degree of
dominance.
1) Right Value: This method is based on the right por-

tion of a fuzzy number for evaluating the fuzzy decision
alternatives [10], [11], [15]. Given the fuzzy vector (wjx1j ,
wjx2j , . . . , wjxnj) of the weighted fuzzy performance matrix
for the attribute Cj in (1), a fuzzy maximum (M j

max) [10], [11],
[54] is defined on the real line R, to represent the best fuzzy
performance rating among all the alternatives with respect to
the attribute Cj as

µMj
max

(x)=

{
x−xj

min

xj
max−xj

min
, xj

min≤x≤xj
max, j=1,2, . . . ,m

0, otherwise
(3)

where

xj
max = sup

n⋃
i=1

{
x, x ∈ R and 0 < µwjxij

(x) < 1
}

xj
min = inf

n⋃
i=1

{
x, x ∈ R and 0 < µwjxij

(x) < 1
}
,

j = 1, 2, . . . ,m. (4)

The degree to which the alternative Ai is the best alternative
with respect to the attribute Cj can then be calculated by com-
paring its weighted fuzzy performance (wjxij) with the fuzzy
maximum (M j

max), which is given in the following equation:

rij =sup
x∈R

(
wjxij ∩M j

max

)
, i=1,2, . . . , n; j=1,2, . . . ,m.

(5)

rij represents the highest degree of approximation of the al-
ternative Ai’s weighted performance on the attribute Cj to
the fuzzy maximum, thus reflecting the DM’s optimistic view
[50], [54]. This setting is in line with the optimal decision of
Bellman and Zadeh [2], who state that “in a fuzzy environment,
objectives and constraints formally have the same nature and
their confluence can be represented by the intersection of
fuzzy sets.”
2) Degree of Optimality: The concept of the degree of opti-

mality is based on the comparison of the weighted fuzzy perfor-
mance (wjxij) and the fuzzy maximum (M j

max) and the fuzzy
minimum (M j

min) for determining the relative performance
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of each alternative Ai with respect to each attribute Cj [11],
[15], [16], [23], [49]. Compared with the right-value defuzzifi-
cation method, the degree of optimality of the defuzzification
method considers not only the right portion of a fuzzy number
but also the left portion of the fuzzy number [11], [15], [16],
[49]. As a result, all the information characterizing a fuzzy
number is used in the defuzzification process.

In this method, a fuzzy minimum (M j
min) [10], [11],

[16], [50] is defined to represent the worst fuzzy perfor-
mance among all the alternatives with respect to each at-
tribute Cj , given the weighted fuzzy performance vector
(wjx1j , wjx2j , . . . , wjxnj) for the attribute Cj , as in (1), by

µMj
min

(x) =

{
xj
max−x

xj
max−xj

min
, xj

min ≤ x ≤ xj
max

0, otherwise.
(6)

By comparing the weighted fuzzy performance (wjxij) of
the alternative Ai with the fuzzy minimum (M j

min), the degree
to which the alternative Ai is not the worst alternative with re-
spect to the attribute Cj is calculated as (1 − supx∈R(wjxij ∩
M j

min)). As a result, the degree of optimality of the alternative
Ai with respect to the attribute Cj rooted in an alternative where
multiple attributes characterize the notion of the best [17], [54],
[60] is determined by (7), where rij indicates the degree of
preferability of the alternative Ai over all the other alternatives
with regard to the attribute Cj

rij =
sup

(
wjxij ∩M j

max

))
+

(
1 − sup

(
wjxij ∩M j

min

))
2

,

i = 1, 2, . . . , n; j = 1, 2, . . . ,m. (7)

3) α-Cut: The α-cut of a fuzzy set indicates the degree to
which an ordinary set belongs to a fuzzy set [9], [16], [45]. By
using an α-cut on the fuzzy weighted performance matrix in
(1), an interval performance matrix can be derived

Zα =




[zα
11l, zα

11r] [zα
12l, zα

12r] · · · [zα
1ml, zα

1mr]
[zα

21l, zα
21r] [zα

22l, zα
22r] · · · [zα

2ml, zα
2mr]

· · · · · · · · · · · ·
[zα

n1l, zα
n1r] [zα

n2l, zα
n2r] · · · [zα

nml, zα
nmr]




(8)

where 0 ≤ α ≤ 1.
An overall crisp performance matrix can be calculated, as

rijα =
zα
ijr + zα

ijl

2
, i = 1, 2, . . . , n; j = 1, 2, . . . ,m.

(9)

4) Fuzzy Integral: A fuzzy integral of a fuzzy number
[9], [15] indicates the probability of occurrence for a fuzzy
event. Due to its simplicity in concept and in computation for
triangular fuzzy numbers, the fuzzy integral of a fuzzy number
has been used by Chang [9] and Yager [46] to develop an index
for ranking fuzzy numbers.

This method defuzzifies the weighted fuzzy performance
matrix in (1) as

rij =
∫

Sij

xµwjxij
(x)dx (10)

where Sij is the support of the fuzzy number wjxij (i =
1, 2, . . . , n; j = 1, 2, . . . ,m) in (1).

5) Area Center: The geometric center of a fuzzy number is
usually a good representation of a fuzzy number [5], [15], [46].
By using this method, the weighted fuzzy performance matrix
is defuzzified by

rij =

∫
Sij

xµwjxij
(x)dx∫

Sij
µwjxij

(x)dx
, i=1, 2, . . . , n; j=1, 2, . . . ,m

(11)

where Sij is the support of the fuzzy number wjxij in (1).
6) Degree of Dominance: The concept of dominance

between fuzzy numbers [15], [49] is based on the compar-
ison of fuzzy numbers Ai and Aj (i �= j) for determin-
ing how much larger or smaller Ai is compared to Aj .
Given the weighted fuzzy performance vector (wjx1j , wjx2j ,
. . . , wjxnj) for the attribute Cj in (1) and a fuzzy maximum
and a fuzzy minimum defined in (2) and (4), the degree to which
the fuzzy maximum dominates the weighted fuzzy performance
(wjxij) of the alternative Ai with respect to the attribute Cj can
be expressed as

d+
ij = d

(
M j

max − wjxij

)
=

∫
D(Mj

max−wjxij)(α)dα

D(Mj
max−wjxij)(α)

=




dLα

(M
j
max−wjxij)

+dRα

(M
j
max−wjxij)

2 , 0≤α≤1
0, otherwise

(12)

where dLα
(Mj

max−wjxij)
and dRα

(Mj
max−wjxij)

are the lower and

upper bounds of the interval, respectively, resulting from the
α-cut on the difference set (M j

max − wjxij).
Similarly, the degree of dominance of the weighted fuzzy

performance (wjxij) of the alternative Ai over the fuzzy mini-
mum M j

min with respect to attribute Cj is given as

d−ij = d
(
wjxij −M j

min

)
=

∫
D(wjxij−Mj

min)(α)dα (13)

where

D(wjxij−Mj
min)(α)

=




dLα

(wjxij−M
j
min)

+dRα

(wjxij−M
j
min)

2 , 0 ≤ α ≤ 1
0, otherwise.

(14)
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dLα
(wjxij−Mj

min)
and dRα

(wjxij−Mj
min)

are the lower and upper

bounds of the interval, respectively, resulting from the α-cut
on the difference set (wjxij −M j

min).
Given d+

ij and d−ij , the weighted performance matrix in (1)
can be defuzzified by

rij =
d−ij

d+
ij + d−ij

, i = 1, 2, . . . , n; j = 1, 2, . . . ,m (15)

where rij represents the relative performance of the alternative
Ai with respect to the attribute Cj .

With the defuzzified performance matrix generated by a de-
fuzzification method, classical MADM methods can be applied
to calculate the overall performance index for each alternative
across all the attributes. All the alternatives can then be ranked
cardinally based on their overall performance index. The next
section presents the two most widely used MADM methods,
which are to be used in our comparative study.

C. MADM Methods: SAW and TOPSIS

The SAW method is probably the most widely accepted and
used MADM approaches in real-world settings [4], [11], [28],
[32], [38], [43], [47], [59], [60]. This method generates an
overall performance index value for each alternative Ai (i =
1, 2, . . . , n) across all attributes Cj by

pi =

m∑
j=1

rijwj

m∑
j=1

wj

, i = 1, 2, . . . , n; j = 1, 2, . . . ,m (16)

where rij is the performance rating of alternative Ai with
respect to attribute Cj , and wj is the weight of attribute Cj .
The larger the index value is, the higher the ranking of the
alternative.

The TOPSIS method is based on the notion that the most
preferred alternative should not only have the shortest distance
from the positive ideal solution but also have the longest
distance from the negative ideal solution [11], [15], [17], [50],
[60]. This method has been widely used for solving MADM
problems because: 1) its underlying concept is rational and
comprehensible and 2) the computation involved is simple.

With the TOPSIS method, the positive and negative ideal so-
lutions [17], [50], [51] can be determined from the defuzzified
weighted performed matrix (rij) as

A+ =
(
max

i
(ri1),max

i
(ri2), . . . ,max

i
(rim)

)

=
(
p+
1 , p+

2 , . . . , p+
m

)
(17)

A− =
(
min

i
(ri1),min

i
(ri2), . . . ,min

i
(rim)

)

=
(
p−1 , p

−
2 , . . . , p

−
m

)
. (18)

The weighted Euclidean distances, between each alternative
Ai and the positive ideal solution A+, and between Ai and the
negative ideal solution A−, can be calculated, respectively, as

d+
i =


 m∑

j=1

(
p+

j − rij

)2




1/2

d−i =


 m∑

j=1

(
rij − p−j

)2




1/2

, i = 1, 2, . . . , n. (19)

The overall performance index value for each alternative
across all the attributes can then be determined by

pi =
d−i

d+
i + d−i

, i = 1, 2, . . . , n. (20)

The larger the index value is, the higher the ranking of the
alternative.

D. Defuzzification-Based Approaches

A defuzzification-based approach for solving the general
fuzzy MADM problem can be developed by combining one
of the six defuzzification methods with an MADM method
such as SAW or TOPSIS. The procedure for developing
such a defuzzification-based approach can be summarized as
follows.

Step 1) Obtain the decision matrix for the subattributes, if
present.

Step 2) Determine the weighting vectors for the subat-
tributes, if present.

Step 3) Obtain the decision vector for the attributes that have
the subattributes.

Step 4) Determine the decision matrix for the attributes by
Step 3) or by the DMs assessment on the per-
formance rating of the alternatives regarding each
attribute.

Step 5) Determine the weighting vector for the attributes.
Step 6) Obtain the weighted fuzzy performance matrix by

multiplying the decision matrix with the weighting
vector, as given in (1).

Step 7) Select a specific defuzzification method for defuzzi-
fying the weighted fuzzy performance matrix.

Step 8) Calculate the overall performance index using SAW
or TOPSIS.

Step 9) Rank the alternatives in a descending order of their
performance index value.

Following the procedure above, 12 defuzzification-based ap-
proaches can be developed. Table I lists these approaches and
their notation for use in later discussion.

To examine the relative effectiveness and consistency of
these defuzzification-based approaches in ranking the decision
alternatives, the EFWA approach [12], [18], [19], [30], [45],
[53] is selected as a comparison base. This approach is
developed based on the concept of the fuzzy weighted average
of Dong and Wong [18], [19], [45]. The EFWA approach
is further extended by Wang and Liou [53] and applied for
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TABLE I
DEFUZZIFICATION-BASED APPROACHES AND THEIR

CORRESPONDING NOTATION

solving a real manufacturing problem by Kao and Liu [30]. The
EFWA approach is selected due to: 1) its simplicity in concept
and 2) its popularity for solving fuzzy MADM problems [12],
[18], [19], [30], [45], [53].

III. PERFORMANCE MEASURES

The performance of the defuzzification-based approaches
can be evaluated subjectively or objectively. In a subjective
manner, a field study can be conducted using actual cases, and
subjective questions are asked in the presence of a selected
group of respondents, with respect to the various performance
measures such as ease of use, ease of learning, and robustness of
the method [4], [6], [24], [38], [43], [59]. The main difficulties
in using this approach include: 1) limited sample size and the
range of the problem; 2) use of randomly selected respondents
rather than real DMs; and 3) existence of biases resulting from
learning in the process.

These defuzzification-based approaches can also be evalu-
ated objectively by running a simulation program using ran-
domly generated fuzzy data [4], [6], [12], [24], [34], [38]. This
method is widely used as it, when designed properly, can:
1) objectively assess the performance of the approaches and
2) be implemented easily. Considering the nature of this study,
the simulation-based evaluation method is more appropriate
as the study aims to get an objective view of the relative
performance of the 12 defuzzification-based approaches for
solving the general fuzzy MADM problem.

To effectively evaluate the simulation result, four new ob-
jective performance measures are defined [4], [6], [12], [24],
[38], including: 1) ranking accuracy; 2) ranking consistency;
3) ranking correlation; and 4) ranking convergence. These four
performance measures are based on five evaluation indexes,
including: 1) most favorable alternative index (R1); 2) ranking
equivalence index (R2); 3) partial ranking consistency index
(R3); 4) mean ranking matches index (R4); and 5) ranking cor-
relation coefficient index (R5). The four performance measures
and the five evaluation indexes are defined below.
1) Ranking Accuracy: This measure aims to compare

the rankings between the EFWA approach and each

defuzzification-based approach. It uses the five evaluation
indexes to determine the ranking accuracy of the individual
defuzzification-based approaches with respect to the EFWA
approach. The index of the most favorable alternative (R1)
indicates the percentage of occurrences where the same optimal
alternative is derived, which is given as

R1 =

t∑
k=1

uk

t
(21)

where t is the number of simulation runs, and k indicates the
kth simulation run, and

uk =
{

1, gb
i = gEFWA

i = 1, b = 1, 2, . . . , 12
0, otherwise.

(22)

In (22) and the following relevant equations, b represents
the bth defuzzification-based approach, and gb

i and gEFWA
i

represent the ranking of the alternative Ai (i = 1, 2, . . . , n),
which resulted from the bth defuzzification-based approach and
the EFWA approach, respectively.

The index of ranking equivalence (R2) represents the
percentage of occurrences where an identical ranking of
all the alternatives Ai (i = 1, 2, . . . , n) is generated by a
defuzzification-based approach and the EFWA approach, which
is calculated by

R2 =

t∑
k=1

uk

t
(23)

where

uk =
{

1, gb
i − gEFWA

i = 0, b = 1, 2, . . . , 12
0, otherwise.

(24)

A partial similar ranking order is achieved when an ordered
pair of alternatives in the ranking sequence of one approach
matches the ordered pair of the same alternatives in another
approach’s rankings. The partial consistency index (R3) shows
the percentage of occurrences where a partially similar ranking
order is achieved between a defuzzification-based approach and
the EFWA approach. This index is calculated by

R3 =

t∑
k=1

n−1∑
i=1

uk

n−1

t
(25)

where

uk =


 1,

gb
i = gEFWA

i

gb
i+1 = gEFWA

i+1

, b = 1, 2, . . . , 12

0, otherwise.

(26)

The index of the mean ranking matches (R4) reflects the
percentage of occurrences where an alternative is ranked in the
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same position between a defuzzification-based approach and
the EFWA approach, which is computed by

R4 =
t∑

k=1

n∑
i=1

uk

n
(27)

where

uk =
{

1, gb
i = gEFWA

i , b = 1, 2, . . . , 12
0, otherwise.

(28)

The ranking coefficient index (R5) is used to determine the
relative closeness of the rankings between two defuzzification-
based approaches. This index can be calculated using Spear-
man’s rank order correlation coefficient [3], [34], [35], [44],
given as

R5 =

t∑
k=1

{
1 −

6
n∑

i=1

(gd
i −gb

i )
2

n(n2−1)

}

t
. (29)

2) Ranking Consistency: The ranking consistency measure
aims to scrutinize the consistency of the rankings between
any pair of defuzzification-based approaches. It is used to
examine the degree of similarity between two defuzzification-
based approaches in ranking decision alternatives. The ranking
consistency measure can help identify the defuzzification-based
approaches that deviate more from all the other defuzzification-
based approaches and also the approaches that are more likely
to produce similar ranking outcomes for specific decision
contexts. This information would greatly assist the DMs in
selecting the appropriate fuzzy MADM approaches for solving
practical problems.

The four indexes defined above (R1−R4) are used in
determining the uniformity among the defuzzification-based
approaches. These indexes show the possibility that a
defuzzification-based approach produces the same ranking as
another approach for a given decision context.
3) Ranking Correlation: The ranking correlation measure

aims to analyze the correlation between all the defuzzification-
based approaches in the experiment. The correlation between
these approaches is determined using the ranking correlation
coefficient (R4), which is defined in (27). Different from the
measure of ranking effectiveness, this measure examines the
consistency and accuracy of all the defuzzification-based ap-
proaches in ranking the decision alternatives.
4) Ranking Convergence: The ranking convergence mea-

sure is used to analyze the performance of individual
defuzzification-based approaches against the EFWA approach.
The convergence of these defuzzification-based approaches is
determined by the ranking correlation coefficient index (R5). It
aims to examine whether a defuzzification-based approach can
produce rankings consistent with the EFWA approach.

TABLE II
RANKING ACCURACY OF THE DEFUZZIFICATION-BASED APPROACHES

IV. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of the 12 defuzzification-based
approaches, we conducted a simulation study using a general
fuzzy MADM problem characterized by ten decision alterna-
tives and ten attributes, and each attribute had ten subattributes.
The simulation study consisted of three phases: 1) running the
simulation for producing the performance index values of
the decision alternatives and their corresponding rankings;
2) calculating the four objective performance measures in
terms of the five indexes; and 3) analyzing these performance
measures of the 12 defuzzification-based approaches for
examining the relative performance of these approaches.

In the simulation study, the fuzzy assessments on the weights
of the attributes and the ratings of the alternatives with re-
spect to each attribute or subattribute were represented with
randomly generated triangular fuzzy numbers with values be-
tween 1 and 100. To represent all the possible data in the
general fuzzy MADM problem, 1000 different datasets were
generated by 1000 runs of simulation. For each randomly
generated problem dataset in a single run of simulation, the 12
defuzzification-based approaches and the EFWA approach were
applied individually to obtain the performance index values
of the alternatives and their corresponding rankings. For each
approach, these results for the 1000 problem datasets were used
to calculate its corresponding values for the four objective per-
formance measures in terms of the five evaluation indexes. The
performance index values of the decision alternatives and their
corresponding rankings were exported on a text file, on which
the statistical package for the social sciences (SPSS) package
was applied for calculating the values of the corresponding
objective performance measures. The results are summarized
in various tables below for further analysis.

Table II shows the ranking accuracy of all the defuzzification-
based approaches. It is clear that no single defuzzification-
based approach can produce the same ranking as the EFWA
approach. This is in consistent with the general belief that
the selection of a specific defuzzification-based approach for
solving a fuzzy MADM problem usually depends on the
problem itself, and the performance of a fuzzy MADM ap-
proach for a fuzzy MADM problem needs to be examined for
an effective decision making in real-world settings [6], [11],
[12], [42].
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TABLE III
RANKING CONSISTENCY OF THE DEFUZZIFICATION-BASED APPROACHES

USING THE MOST FAVORABLE ALTERNATIVE INDEX

TABLE IV
RANKING CONSISTENCY OF THE DEFUZZIFICATION-BASED APPROACHES

USING THE RANKING EQUIVALENT INDEX

Table II also shows that those defuzzification-based ap-
proaches using the degree of optimality (D2), the area cen-
ter (D5), and the degree of dominance (D6) as the method
of the defuzzification perform much better than the other
defuzzification-based approaches. This may be due to their
effective use of all the available information characterizing the
fuzzy number in the defuzzification process [16], [47].

To examine the ranking consistency between the
defuzzification-based approaches, a pairwise comparison
between the 12 approaches is conducted based on the first
four indexes (R1−R4) defined above. Tables III–VI show the
results, which are similar to that in Table II.

In Table III, the defuzzification-based approaches based on
the degree of optimality (D2), the area center (D5), and the
degree of dominance (D6) outperform the others in terms of
the most favorable alternative index. This suggests that these
three defuzzification methods when combined with SAW and
TOPSIS are most likely to produce the same rankings for
selecting the most favorable alternative. This may be due to the
fact that these three defuzzification methods use similar fuzzy
reference sets in their defuzzification process that considers all
the information characterizing a fuzzy number [11], [15], [49].

The defuzzification-based approaches associated with the
right-value defuzzification method (D1) have the worst perfor-
mance in selecting the most favorable alternative, as indicated
in Table III. This may be attributed to their use of the infor-

TABLE V
RANKING CONSISTENCY OF THE DEFUZZIFICATION-BASED APPROACHES

USING THE PARTIAL CONSISTENCY INDEX

TABLE VI
RANKING CONSISTENCY OF THE DEFUZZIFICATION-BASED APPROACHES

USING THE MEAN RANKING MATCHES INDEX

mation only on the right portion of a fuzzy number and their
ignorance of the information on the left portion of the fuzzy
number in the defuzzification process [10], [12], [15], [49].

An interesting phenomenon that can be observed from
Table III is that the D5-SAW and D6-SAW approaches generate
the same result for the most favorable alternative index. This
suggests that the defuzzification methods of the area center
(D5) and the degrees of dominance (D6) when used with
the SAW produce an identical ranking for the most favorable
alternative at every single simulation run for a given decision
setting. In practical terms, this means that it makes no difference
as to which of these two approaches to choose if a DM is
only concerned about selecting the best decision alternative in
a given situation.

Table IV shows a very low index value with respect to
the ranking equivalent index between the defuzzification-based
approaches, with the exception of those approaches based on
the area center (D5) and the degree of dominance (D6) as-
sociated with SAW. This suggests that these defuzzification-
based approaches, other than D5-SAW and D6-SAW, are highly
unlikely to produce the same ranking for the same decision
setting. It also shows that the use of a specific defuzzification
method for developing a defuzzification-based fuzzy MADM
approach does have a significant effect on the final rank-
ing outcomes of the decision alternatives in a given decision
setting.
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TABLE VII
RANKING CORRELATION OF THE DEFUZZIFICATION-BASED APPROACHES

Table V shows that the 12 defuzzification-based approaches
have a similar performance about the partial consistency index,
as compared to the ranking equivalent index. Again, when
used with SAW, both the area center (D5) and the degree of
dominance (D6) methods of the defuzzification produce the
same rankings.

It is evident from Tables III–VI that those defuzzification-
based approaches using the area center (D5) and the degree
of dominance (D6) for defuzzification produce the highest
values consistently across all the evaluation indexes, which is
followed by those approaches with the degree of optimality
(D2) method. The approaches using the fuzzy integral (D4)
method are the worst performer among all the defuzzification-
based approaches. This again may be because the defuzzifica-
tion methods of the degree of optimality (D2), the area center
(D5), and the degree of dominance (D6) use all the information
effectively on both the left and right sides of a fuzzy number in
the defuzzification process [10], [11], [16], [49].

It can also be noted in Tables III–VI that SAW produces a
more consistent ranking outcome than TOPSIS, regardless of
the defuzzification method applied. This suggests that SAW
is a better choice for developing the defuzzification-based
approaches in solving the general fuzzy MADM problem due
to: 1) soundness of the underlying utility theory [11], [31] and
2) linearity of the mathematical formulation [4], [32].

Table VII gives the average ranking correlation coefficient
between the 12 defuzzification-based approaches. It shows that
the approaches using the α-cut (D3) and the fuzzy integral
(D4) for defuzzification are least correlated. It also demon-
strates that the approaches using the fuzzy integral (D4) and
the right value (D1) for defuzzification are perfectly correlated.
This means that the defuzzification-based approaches using the
α-cut (D3) and the fuzzy integral (D4) for defuzzification are
least likely to produce similar rankings in a given situation. The
approaches that are based on the fuzzy integral (D4) and the
right value (D1) for defuzzification always produce the same
rankings for the same fuzzy MADM problem.

Table VII shows that a 100% ranking correlation is achieved
between the approach using the area center method (D5) and
the approach using the degree of dominance method (D6)

TABLE VIII
RANKING CONVERGENCE OF SIX DEFUZZIFICATION METHODS

WITH RESPECT TO SAW AND TOPSIS AND

THEIR RELATIVE PERFORMANCE

TABLE IX
PERFORMANCE RANKING OF THE DEFUZZIFICATION-BASED APPROACHES

WITH RESPECT TO THE FOUR OBJECTIVE PERFORMANCE MEASURES

associated with the SAW. With a reasonable confidence, these
two defuzzification-based approaches would produce the same
ranking for the general fuzzy MADM problem.

The ranking convergence of the defuzzification-based ap-
proaches is determined by comparing the overall rankings
of a defuzzification-based approach with that of the EFWA
approach, which is based on the Spearman’s correlation coef-
ficient [45]. Table VIII shows the result.

Table VIII shows that the approaches based on the degree
of optimality (D2) method, the area center (D5) method, and
the degree of dominance method (D6) produce more consistent
rankings than those approaches based on other defuzzification
methods. This reinforces the previous finding that the effective
use of all the available information for defuzzifying fuzzy
numbers is critical in developing effective fuzzy MADM ap-
proaches [11], [15], [49]. This reinforced finding suggests that
the approaches based on a defuzzification method capable of
using all the available information of the fuzzy numbers are
more effective in solving the general fuzzy MADM problem
[11], [48].

To provide an effective aid to the DMs for selecting the
appropriate defuzzification-based approaches in solving the
fuzzy MADM problems, Table IX summarizes the relative
performance of the 12 defuzzification-based approaches with
respect to the four objective performance measures. The overall
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TABLE X
PERFORMANCE RANKING OF THE DEFUZZIFICATION-BASED APPROACHES

UNDER TWO SPECIFIC DECISION SETTINGS

performance of the individual approaches is determined based
on the aggregated scores of the rankings with respect to each
criterion.

Table IX shows that D6-SAW is the best defuzzification-
based approach for solving the general fuzzy MADM problem,
which is followed by D5-SAW, D2-SAW, and D2-TOPSIS,
across all the objective performance measures. This phenom-
enon reinforces our notion that an effective defuzzification-
based approach has to use all the available information of
a fuzzy number in the defuzzification process [10], [11],
[15], [49].

It is also evident in Table IX that those defuzzification-
based approaches based on SAW outperform those approaches
associated with TOPSIS. This suggests that SAW is a preferred
choice for developing the defuzzification-based approaches in
fuzzy MADM.

Two common decision settings in fuzzy MADM often
present in real situations are: 1) selecting the best alternative
from a given set of alternatives and 2) ranking all the deci-
sion alternatives. Depending on the decision setting involved,
different defuzzification-based approaches can be selected for
effective decision making. Table X presents an overall ranking
of these defuzzification-based approaches with respect to these
two decision settings.

Based on the research findings above, a real expert sys-
tem can be developed, which can facilitate the selection of
the specific defuzzification-based approaches with respect to
the circumstance of a specific decision situation such as the
decision-making settings 1) or 2) [11]. Linguistic rules [11],
[15], [50], [51] can be developed to adequately capture the
DM’s requirements and the characteristics of the decision situ-
ation. As a result, effective decision aids can be provided. More
research is required to adequately address this issue.

V. CONCLUSION

This paper has presented an objective comparative study
based on simulation in order to examine the performance of

12 defuzzification-based approaches for solving the general
fuzzy MADM problem. Some specific performance measures
and decision settings are identified, and the effectiveness and
consistency of these approaches are highlighted. The fuzzy
MADM approaches based on SAW and defuzzification meth-
ods of using all the available information of the fuzzy numbers
would produce effective and consistent rankings. The findings
in this paper provide valuable insights for selecting the appro-
priate defuzzification methods in actual decision settings.
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