873 research outputs found

    Langerhans cell hyperplasia in the tumor stage of mycosis fungoides: a mimic of Langerhans cell histiocytosis

    Get PDF
    AbstractMycosis fungoides is a form of cutaneous T-cell lymphoma (CTCL). Malignant CD4+ T cells have been found to adopt the T-regulatory (Treg) cell phenotype and function. We present the case of a 66-year-old man diagnosed with mycosis fungoides that was progressing from the plaque to the tumor stage. The histopathological examinations showed that the Langerhans cell (LC) infiltration in the skin lesion of the tumor stage was greater than that in the patch/plaque stage; the tumor stage lesions resembled LC histiocytosis pathologically. The associations among LCs, apoptotic tumor cells, Treg CTCL cells, and relevant cytokines are complex. Treg CTCL cells produce the immunosuppressive cytokines interleukin-10 and transforming growth factor beta, which facilitate continuous recruitment of LCs and maintenance of long-term dendritic cell immaturity, thereby explaining the remarkable LC infiltration in the tumor stage samples from our patient. This phenomenon indicates that LCs accompanied by Treg CTCL cells may play an important synergistic role in the tumor progression. The development of immunotherapy directed against Treg CTCL cells and LCs overproduction and other immunosuppressive cytokines may be a potent useful adjuvant and worthy of further investigation

    Phase 2 Study of Anti-Human Cytomegalovirus Monoclonal Antibodies for Prophylaxis in Hematopoietic Cell Transplantation.

    Get PDF
    Human cytomegalovirus (HCMV) can cause significant disease in immunocompromised patients, and treatment options are limited by toxicities. CSJ148 is a combination of two anti-HCMV human monoclonal antibodies (LJP538 and LJP539) that bind to and inhibit the functions of viral HCMV glycoprotein B (gB) and the pentameric complex, consisting of glycoproteins gH, gL, UL128, UL130, and UL131. In this phase 2, randomized, placebo-controlled trial, we evaluated the safety and efficacy of CSJ148 for prophylaxis of HCMV in patients undergoing allogeneic hematopoietic stem cell transplantation. As would be expected in the study population, all the patients (100%) reported at least one treatment-emergent adverse event. There were 22 deaths during this study, and over 80% of the patients receiving placebo or CSJ148 developed at least one adverse event of grade 3 or higher severity. No subject who received antibody developed a hypersensitivity- or infusion-related reaction. CSJ148-treated patients showed trends toward decreased viral load, shorter median duration of preemptive therapy, and fewer courses of preemptive therapy. However, the estimated probability that CSJ148 decreases the need for preemptive therapy compared to placebo was 69%, with a risk ratio of 0.89 and a 90% credible interval of 0.61 to 1.31. The primary efficacy endpoint was therefore not met, indicating that CSJ148 did not prevent clinically significant HCMV reactivation in recipients of allogeneic hematopoietic cell transplants. (This study has been registered at ClinicalTrials.gov under identifier NCT02268526 and at EudraCT under number 2017-002047-15.)

    The nucleolar protein NIFK promotes cancer progression via CK1α/β-catenin in metastasis and Ki-67-dependent cell proliferation.

    Get PDF
    Nucleolar protein interacting with the FHA domain of pKi-67 (NIFK) is a Ki-67-interacting protein. However, its precise function in cancer remains largely uninvestigated. Here we show the clinical significance and metastatic mechanism of NIFK in lung cancer. NIFK expression is clinically associated with poor prognosis and metastasis. Furthermore, NIFK enhances Ki-67-dependent proliferation, and promotes migration, invasion in vitro and metastasis in vivo via downregulation of casein kinase 1α (CK1α), a suppressor of pro-metastatic TCF4/β-catenin signaling. Inversely, CK1α is upregulated upon NIFK knockdown. The silencing of CK1α expression in NIFK-silenced cells restores TCF4/β-catenin transcriptional activity, cell migration, and metastasis. Furthermore, RUNX1 is identified as a transcription factor of CSNK1A1 (CK1α) that is negatively regulated by NIFK. Our results demonstrate the prognostic value of NIFK, and suggest that NIFK is required for lung cancer progression via the RUNX1-dependent CK1α repression, which activates TCF4/β-catenin signaling in metastasis and the Ki-67-dependent regulation in cell proliferation

    Sulfur and nitrogen co-doped graphene for metal-free catalytic oxidation reactions

    Get PDF
    Sulfur and nitrogen co-doped reduced graphene oxide (rGO) is synthesized bya facile method and demonstrated remarkably enhanced activities in metal-free activation of peroxymonosulfate (PMS) for catalytic oxidation of phenol. Based on first-order kinetic model, S–N co-doped rGO (SNG) presents an apparent reaction rate constant of 0.043 ± 0.002 min -1 , which is 86.6, 22.8, 19.7, and 4.5-fold as high as that over graphene oxide (GO), rGO, S-doped rGO (S-rGO), and N-doped rGO(N-rGO), respectively. A variety of characterization techniques and density functional theory calculations are employed to investigate the synergistic effect of sulfur and nitrogen co-doping. Co-doping of rGO at an optimal sulfur loading can effectively break the inertness of carbon systems, activate the sp 2 -hybridized carbon lattice and facilitate the electron transfer from covalent graphene sheets for PMS activation. Moreover, both electron paramagnetic resonance (EPR) spectroscopy and classical quenching tests are employed to investigate the generation and evolution of reactive radicals on the SNG sample for phenol catalytic oxidation. This study presents anovel metal-free catalyst for green remediation of organic pollutants in water

    Association of Female Menopause With Atrioventricular Mechanics and Outcomes

    Get PDF
    BACKGROUND: Despite known sex differences in cardiac structure and function, little is known about how menopause and estrogen associate with atrioventricular mechanics and outcomes. OBJECTIVE: To study how, sex differences, loss of estrogen in menopause and duration of menopause, relate to atrioventricular mechanics and outcomes. METHODS: Among 4051 asymptomatic adults (49.8 ± 10.8 years, 35%women), left ventricular (LV) and left atrial (LA) mechanics were assessed using speckle-tracking. RESULTS: Post-menopausal (vs. pre-menopausal) women had similar LV ejection fraction but reduced GLS, reduced PALS, increased LA stiffness, higher LV sphericity and LV torsion (all p < 0.001). Multivariable analysis showed menopause to be associated with greater LV sphericity (0.02, 95%CI 0.01, 0.03), higher indexed LV mass (LVMi), lower mitral e’, lower LV GLS (0.37, 95%CI 0.04–0.70), higher LV torsion, larger LA volume, worse PALS (∼2.4-fold) and greater LA stiffness (0.028, 95%CI 0.01–0.05). Increasing years of menopause was associated with further reduction in GLS, markedly worse LA mechanics despite greater LV sphericity and higher torsion. Lower estradiol levels correlated with more impaired LV diastolic function, impaired LV GLS, greater LA stiffness, and increased LV sphericity and LV torsion (all p < 0.05). Approximately 5.5% (37/669) of post-menopausal women incident HF over 2.9 years of follow-up. Greater LV sphericity [adjusted hazard ratio (aHR) 1.04, 95%CI 1.00–1.07], impaired GLS (aHR 0.87, 95%CI 0.78–0.97), reduced peak left atrial longitudinal strain (PALS, aHR 0.94, 95%CI 0.90–0.99) and higher LA stiffness (aHR 10.5, 95%CI 1.69–64.6) were independently associated with the primary outcome of HF hospitalizations in post-menopause. Both PALS < 23% (aHR:1.32, 95%CI 1.01–3.49) and GLS < 16% (aHR:5.80, 95%CI 1.79–18.8) remained prognostic for the incidence of HF in post-menopausal women in dichotomous analyses, even after adjusting for confounders. Results were consistent with composite outcomes of HF hospitalizations and 1-year all-cause mortality as well. CONCLUSION: Menopause was associated with greater LV/LA remodeling and reduced LV longitudinal and LA function in women. The cardiac functional deficit with menopause and lower estradiol levels, along with their independent prognostic value post-menopause, may elucidate sex differences in heart failure further

    A scattering and repulsive swarm intelligence algorithm for solving global optimization problems

    Get PDF
    The firefly algorithm (FA), as a metaheuristic search method, is useful for solving diverse optimization problems. However, it is challenging to use FA in tackling high dimensional optimization problems, and the random movement of FA has a high likelihood to be trapped in local optima. In this research, we propose three improved algorithms, i.e., Repulsive Firefly Algorithm (RFA), Scattering Repulsive Firefly Algorithm (SRFA), and Enhanced SRFA (ESRFA), to mitigate the premature convergence problem of the original FA model. RFA adopts a repulsive force strategy to accelerate fireflies (i.e. solutions) to move away from unpromising search regions, in order to reach global optimality in fewer iterations. SRFA employs a scattering mechanism along with the repulsive force strategy to divert weak neighbouring solutions to new search regions, in order to increase global exploration. Motivated by the survival tactics of hawk-moths, ESRFA incorporates a hovering-driven attractiveness operation, an exploration-driven evading mechanism, and a learning scheme based on the historical best experience in the neighbourhood to further enhance SRFA. Standard and CEC2014 benchmark optimization functions are used for evaluation of the proposed FA-based models. The empirical results indicate that ESRFA, SRFA and RFA significantly outperform the original FA model, a number of state-of-the-art FA variants, and other swarm-based algorithms, which include Simulated Annealing, Cuckoo Search, Particle Swarm, Bat Swarm, Dragonfly, and Ant-Lion Optimization, in diverse challenging benchmark functions

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Enhanced upper genital tract pathologies by blocking Tim-3 and PD-L1 signaling pathways in mice intravaginally infected with Chlamydia muridarum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although Tim-3 & PD-L1 signaling pathways play important roles in negatively regulating immune responses, their roles in chlamydial infection have not been evaluated.</p> <p>Methods</p> <p>Neutralization antibodies targeting Tim-3 and PD-L1 were used to treat mice. Following an intravaginal infection with <it>C. muridarum </it>organisms, mice with or without the dual antibody treatment were compared for live chlamydial organism shedding from the lower genital tract and inflammatory pathology in the upper genital tract.</p> <p>Results</p> <p>Mice treated with anti-Tim-3 and anti-PD-L1 antibodies displayed a time course of live organism shedding similar to that of mice treated with equivalent amounts of isotype-matched IgG molecules. The combined antibody blocking failed to alter either the lower genital tract cytokine or systemic humoral and cellular adaptive responses to <it>C. muridarum </it>infection. However, the antibody blocking significantly enhanced <it>C. muridarum</it>-induced pathologies in the upper genital tract, including more significant hydrosalpinx and inflammatory infiltration in uterine horn and oviduct tissues.</p> <p>Conclusions</p> <p>The Tim-3 and PD-L1-mediated signaling can significantly reduce pathologies in the upper genital tract without suppressing immunity against chlamydial infection, suggesting that Tim-3 and PD-L1-mediated negative regulation may be manipulated to attenuate tubal pathologies in women persistently infected with <it>C. trachomatis </it>organisms.</p

    Macrophage Migration Inhibitory Factor Induces Autophagy via Reactive Oxygen Species Generation

    Get PDF
    Autophagy is an evolutionarily conserved catabolic process that maintains cellular homeostasis under stress conditions such as starvation and pathogen infection. Macrophage migration inhibitory factor (MIF) is a multifunctional cytokine that plays important roles in inflammation and tumorigenesis. Cytokines such as IL-1β and TNF-α that are induced by MIF have been shown to be involved in the induction of autophagy. However, the actual role of MIF in autophagy remains unclear. Here, we have demonstrated that incubation of human hepatoma cell line HuH-7 cells with recombinant MIF (rMIF) induced reactive oxygen species (ROS) production and autophagy formation, including LC3-II expression, LC3 punctae formation, autophagic flux, and mitochondria membrane potential loss. The autophagy induced by rMIF was inhibited in the presence of MIF inhibitor, ISO-1 as well as ROS scavenger N-acetyl-L-cysteine (NAC). In addition, serum starvation-induced MIF release and autophagy of HuH-7 cells were partly blocked in the presence of NAC. Moreover, diminished MIF expression by shRNA transfection or inhibition of MIF by ISO-1 decreased serum starvation-induced autophagy of HuH-7 cells. Taken together, these data suggest that cell autophagy was induced by MIF under stress conditions such as inflammation and starvation through ROS generation
    corecore