865 research outputs found

    UniProt: the Universal Protein knowledgebase

    Get PDF
    To provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information, the Swiss‐Prot, TrEMBL and PIR protein database activities have united to form the Universal Protein Knowledgebase (UniProt) consortium. Our mission is to provide a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross‐references and query interfaces. The central database will have two sections, corresponding to the familiar Swiss‐Prot (fully manually curated entries) and TrEMBL (enriched with automated classification, annotation and extensive cross‐references). For convenient sequence searches, UniProt also provides several non‐redundant sequence databases. The UniProt NREF (UniRef) databases provide representative subsets of the knowledgebase suitable for efficient searching. The comprehensive UniProt Archive (UniParc) is updated daily from many public source databases. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). The scientific community is encouraged to submit data for inclusion in UniPro

    The Universal Protein Resource (UniProt)

    Get PDF
    The Universal Protein Resource (UniProt) provides the scientific community with a single, centralized, authoritative resource for protein sequences and functional information. Formed by uniting the Swiss-Prot, TrEMBL and PIR protein database activities, the UniProt consortium produces three layers of protein sequence databases: the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the UniProt Reference (UniRef) databases. The UniProt Knowledgebase is a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase with extensive cross-references. This centrepiece consists of two sections: UniProt/Swiss-Prot, with fully, manually curated entries; and UniProt/TrEMBL, enriched with automated classification and annotation. During 2004, tens of thousands of Knowledgebase records got manually annotated or updated; we introduced a new comment line topic: TOXIC DOSE to store information on the acute toxicity of a toxin; the UniProt keyword list got augmented by additional keywords; we improved the documentation of the keywords and are continuously overhauling and standardizing the annotation of post-translational modifications. Furthermore, we introduced a new documentation file of the strains and their synonyms. Many new database cross-references were introduced and we started to make use of Digital Object Identifiers. We also achieved in collaboration with the Macromolecular Structure Database group at EBI an improved integration with structural databases by residue level mapping of sequences from the Protein Data Bank entries onto corresponding UniProt entries. For convenient sequence searches we provide the UniRef non-redundant sequence databases. The comprehensive UniParc database stores the complete body of publicly available protein sequence data. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). New releases are published every two week

    The Universal Protein Resource (UniProt)

    Get PDF
    The Universal Protein Resource (UniProt) provides the scientific community with a single, centralized, authoritative resource for protein sequences and functional information. Formed by uniting the Swiss-Prot, TrEMBL and PIR protein database activities, the UniProt consortium produces three layers of protein sequence databases: the UniProt Archive (UniParc), the UniProt Knowledgebase (UniProt) and the UniProt Reference (UniRef) databases. The UniProt Knowledgebase is a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase with extensive cross-references. This centrepiece consists of two sections: UniProt/Swiss-Prot, with fully, manually curated entries; and UniProt/TrEMBL, enriched with automated classification and annotation. During 2004, tens of thousands of Knowledgebase records got manually annotated or updated; we introduced a new comment line topic: TOXIC DOSE to store information on the acute toxicity of a toxin; the UniProt keyword list got augmented by additional keywords; we improved the documentation of the keywords and are continuously overhauling and standardizing the annotation of post-translational modifications. Furthermore, we introduced a new documentation file of the strains and their synonyms. Many new database cross-references were introduced and we started to make use of Digital Object Identifiers. We also achieved in collaboration with the Macromolecular Structure Database group at EBI an improved integration with structural databases by residue level mapping of sequences from the Protein Data Bank entries onto corresponding UniProt entries. For convenient sequence searches we provide the UniRef non-redundant sequence databases. The comprehensive UniParc database stores the complete body of publicly available protein sequence data. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). New releases are published every two weeks

    A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions

    Get PDF
    Scintillating crystal detector may offer some potential advantages in the low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed near the core of Nuclear Power Station II in Taiwan is being constructed for the studies of electron-neutrino scatterings and other keV-MeV range neutrino interactions. The motivations of this detector approach, the physics to be addressed, the basic experimental design, and the characteristic performance of prototype modules are described. The expected background channels and their experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    InterPro in 2017-beyond protein family and domain annotations

    Get PDF
    InterPro (http://www.ebi.ac.uk/interpro/) is a freely available database used to classify protein sequences into families and to predict the presence of important domains and sites. InterProScan is the underlying software that allows both protein and nucleic acid sequences to be searched against InterPro's predictive models, which are provided by its member databases. Here, we report recent developments with InterPro and its associated software, including the addition of two new databases (SFLD and CDD), and the functionality to include residue-level annotation and prediction of intrinsic disorder. These developments enrich the annotations provided by InterPro, increase the overall number of residues annotated and allow more specific functional inferences

    Autoimmune and autoinflammatory mechanisms in uveitis

    Get PDF
    The eye, as currently viewed, is neither immunologically ignorant nor sequestered from the systemic environment. The eye utilises distinct immunoregulatory mechanisms to preserve tissue and cellular function in the face of immune-mediated insult; clinically, inflammation following such an insult is termed uveitis. The intra-ocular inflammation in uveitis may be clinically obvious as a result of infection (e.g. toxoplasma, herpes), but in the main infection, if any, remains covert. We now recognise that healthy tissues including the retina have regulatory mechanisms imparted by control of myeloid cells through receptors (e.g. CD200R) and soluble inhibitory factors (e.g. alpha-MSH), regulation of the blood retinal barrier, and active immune surveillance. Once homoeostasis has been disrupted and inflammation ensues, the mechanisms to regulate inflammation, including T cell apoptosis, generation of Treg cells, and myeloid cell suppression in situ, are less successful. Why inflammation becomes persistent remains unknown, but extrapolating from animal models, possibilities include differential trafficking of T cells from the retina, residency of CD8(+) T cells, and alterations of myeloid cell phenotype and function. Translating lessons learned from animal models to humans has been helped by system biology approaches and informatics, which suggest that diseased animals and people share similar changes in T cell phenotypes and monocyte function to date. Together the data infer a possible cryptic infectious drive in uveitis that unlocks and drives persistent autoimmune responses, or promotes further innate immune responses. Thus there may be many mechanisms in common with those observed in autoinflammatory disorders

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    Chronic hepatitis B: whom to treat and for how long? Propositions, challenges, and future directions

    Get PDF
    Recent guidelines of the American Association for the Study of Liver Diseases, the European Association for the Study of the Liver, and the Asian Pacific Association for the Study of the Liver 2008 update of the “Asian-Pacific consensus statement on the management of chronic hepatitis B” offer comprehensive recommendations for the general management of chronic hepatitis B (CHB). These recommendations highlight preferred approaches to the prevention, diagnosis, and treatment of CHB. Nonetheless, the results of recent studies have led to an improved understanding of the disease and a belief that current recommendations on specific therapeutic considerations, including CHB treatment initiation and cessation criteria, particularly in patient populations with special circumstances, can be improved. Twelve experts from the Asia-Pacific region formed the Asia-Pacific Panel Recommendations for the Optimal Management of Chronic Hepatitis B (APPROACH) Working Group to review, challenge, and assess relevant new data and inform future updates of CHB treatment guidelines. The significance of and controversy about reported findings were discussed and debated in an expert meeting of the Working Group in Beijing, China, in November 2008. This review paper attempts to identify areas requiring improved CHB management and provide suggestions for future guideline updates, with special emphasis on treatment initiation and duration
    corecore