1,271 research outputs found

    Substorms on Mercury?

    Get PDF
    Qualitative similarities between some of the variations in the Mercury encounter data and variations in the corresponding regions of the earth's magnetosphere during substorms are pointed out. The Mariner 10 data on Mercury show a strong interaction between the solar wind and the plant similar to a scaled down version of that for the earth's magnetosphere. Some of the features observed in the night side Mercury magnetosphere suggest time dependent processes occurring there

    Soil acidity - high rainfall pastures. Lime on old land pastures - field & glasshouse experiments

    Get PDF
    Soil Acidity - High Rainfall Pastures (funded by the Australian Meat Research Committee). Lime on old land pastures. 1. Field experiments - 80BU13, 80BU14, 81AL10, 81AL12, 81AL16, 81BU18, 81BY18, 81BY19, 81BY25, 81BY26, 82AL4, 82AL5, 82AL55, 82BU7, 82BU8, 82HA35, 82HA36, 82PE1, 83AL7, 83AL9, 83AL10, 83AL11, 83AL13, 83AL14, 83BU25, 83BU26, 83BY29, 83HA19, 83HA41, 84BU9, 84BY36, 84BY37, 84HA21. 2. Glasshouse experiments - 84GL4. Investigation of factors involved in lime responses on a new land acid peaty sand. 84GL7, 84GL8. Investigation of factors involved in lime responses on old land high rainfall area pastures

    Interaction of the solar wind with Venus

    Get PDF
    Two topics related to the interaction of the solar wind with Venus are considered. First, a short review of the experimental evidence with particular attention to plasma measurements carried out on Mariner-5 and Mariner-10 is given. Secondly, the results of some recent theoretical work on the interaction of the solar wind with the ionosphere of Venus are summarized

    Soil resource supply influences faunal size–specific distributions in natural food webs

    Get PDF
    The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways

    Simulation of growth and development of diverse legume species in APSIM

    Get PDF
    This paper describes the physiological basis and validation of a generic legume model as it applies to 4 species: chickpea (Cicer arietinum L.), mungbean (Vigna radiata (L.) Wilczek), peanut (Arachis hypogaeaL.), and lucerne (Medicago sativa L.). For each species, the key physiological parameters were derived from the literature and our own experimentation. The model was tested on an independent set of experiments, predominantly from the tropics and subtropics of Australia, varying in cultivar, sowing date, water regime (irrigated or dryland), row spacing, and plant population density. The model is an attempt to simulate crop growth and development with satisfactory comprehensiveness, without the necessity of defining a large number of parameters. A generic approach was adopted in recognition of the common underlying physiology and simulation approaches for many legume species. Simulation of grain yield explained 77, 81, and 70% of the variance (RMSD = 31, 98, and 46 g/m2) for mungbean (n = 40, observed mean = 123 g/m2), peanut (n = 30, 421 g/m2), and chickpea (n = 31, 196 g/m2), respectively. Biomass at maturity was simulated less accurately, explaining 64, 76, and 71% of the variance (RMSD = 134, 236, and 125 g/m2) for mungbean, peanut, and chickpea, respectively. RMSD for biomass in lucerne (n = 24) was 85 g/m2 with an R2 of 0.55. Simulation accuracy is similar to that achieved by single-crop models and suggests that the generic approach offers promise for simulating diverse legume species without loss of accuracy or physiological rigour

    New Approaches to Clover Breeding

    Get PDF
    White clover (Trifolium repens L.) and red clover (T. pratense) are the major forage legumes of temperate pastures. Breeding efforts have focused on overcoming the constraints to productivity and reliability in this species and thereby optimising their contribution to mixed swards. In recent years there has been an increased emphasis on livestock production and the efficient utilisation of forage material in the rumen. In this paper we report on a shift in the aims of forage legume breeding at IGER, building on a strong agronomic platform but giving greater consideration to the environmental footprint of our varieties and the contribution that they can make to the quality of meat and milk

    Reduced tillage, but not organic matter input, increased nematode diversity and food web stability in European long‐term field experiments

    Get PDF
    Soil nematode communities and food web indices can inform about the complexity, nutrient flows and decomposition pathways of soil food webs, reflecting soil quality. Relative abundance of nematode feeding and life‐history groups are used for calculating food web indices, i.e., maturity index (MI), enrichment index (EI), structure index (SI) and channel index (CI). Molecular methods to study nematode communities potentially offer advantages compared to traditional methods in terms of resolution, throughput, cost and time. In spite of such advantages, molecular data have not often been adopted so far to assess the effects of soil management on nematode communities and to calculate these food web indices. Here, we used high‐throughput amplicon sequencing to investigate the effects of tillage (conventional vs. reduced) and organic matter addition (low vs. high) on nematode communities and food web indices in 10 European long‐term field experiments and we assessed the relationship between nematode communities and soil parameters. We found that nematode communities were more strongly affected by tillage than by organic matter addition. Compared to conventional tillage, reduced tillage increased nematode diversity (23% higher Shannon diversity index), nematode community stability (12% higher MI), structure (24% higher SI), and the fungal decomposition channel (59% higher CI), and also the number of herbivorous nematodes (70% higher). Total and labile organic carbon, available K and microbial parameters explained nematode community structure. Our findings show that nematode communities are sensitive indicators of soil quality and that molecular profiling of nematode communities has the potential to reveal the effects of soil management on soil quality

    A Method for Data-Driven Simulations of Evolving Solar Active Regions

    Full text link
    We present a method for performing data-driven simulations of solar active region formation and evolution. The approach is based on magnetofriction, which evolves the induction equation assuming the plasma velocity is proportional to the Lorentz force. The simulations of active region coronal field are driven by temporal sequences of photospheric magnetograms from the Helioseismic Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO). Under certain conditions, the data-driven simulations produce flux ropes that are ejected from the modeled active region due to loss of equilibrium. Following the ejection of flux ropes, we find an enhancement of the photospheric horizontal field near the polarity inversion line. We also present a method for the synthesis of mock coronal images based on a proxy emissivity calculated from the current density distribution in the model. This method yields mock coronal images that are somewhat reminiscent of images of active regions taken by instruments such as SDO's Atmospheric Imaging Assembly (AIA) at extreme ultraviolet wavelengths.Comment: Accepted to ApJ; comments/questions related to this article are welcome via e-mail, even after publicatio

    Assessing the Effects of Mosquito Nets on Malaria Mortality Using a Space Time Model: A Case Study of Rufiji and Ifakara Health and Demographic Surveillance System Sites in Rural Tanzania.

    Get PDF
    Although malaria decline has been observed in most sub-Saharan African countries, the disease still represents a significant public health burden in Tanzania. There are contradictions on the effect of ownership of at least one mosquito net at household on malaria mortality. This study presents a Bayesian modelling framework for the analysis of the effect of ownership of at least one mosquito net at household on malaria mortality with environmental factors as confounder variables. The analysis used longitudinal data collected in Rufiji and Ifakara Health Demographic Surveillance System (HDSS) sites for the period of 1999-2011 and 2002-2012, respectively. Bayesian framework modelling approach using integrated nested laplace approximation (INLA) package in R software was used. The space time models were established to assess the effect of ownership of mosquito net on malaria mortality in 58 villages in the study area. The results show that an increase of 10 % in ownership of mosquito nets at village level had an average of 5.2 % decrease inall age malaria deaths (IRR = 0.948, 95 % CI = 0.917, 0.977) in Rufiji HDSS and 12.1 % decrease in all age malaria deaths (IRR = 0.879, 95 % CI = 0.806, 0.959) in Ifakara HDSS. In children under 5 years, results show an average of 5.4 % decrease of malaria deaths (IRR = 0.946, 95 % CI = 0.909, 0.982) in Rufiji HDSS and 10 % decrease of malaria deaths (IRR = 0.899, 95 % CI = 0.816, 0.995) in Ifakara HDSS. Model comparison show that model with spatial and temporal random effects was the best fitting model compared to other models without spatial and temporal, and with spatial-temporal interaction effects. This modelling framework is appropriate and provides useful approaches to understanding the effect of mosquito nets for targeting malaria control intervention. Furthermore, ownership of mosquito nets at household showed a significant impact on malaria mortality
    • 

    corecore