951 research outputs found

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells

    Get PDF
    Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ESC-derived cardiomyocytes in cell therapy and tissue engineering were limited by difficulties in selecting the desired cells from the heterogeneous cell population. We describe a simple method to generate relatively pure cardiomyocytes from mouse ESCs. A construct comprising mouse cardiac α-myosin heavy chain (MHC) promoter driving the neomycin resistance gene and SV40 promoter driving the hygromycin resistant gene designated pMHCneo/ SV40-hygro, was stably transfected into mouse ESCs. The transgenic ESC line, designated MN6 retained the undifferentiated state and the potential of cardiogenic differentiation. After G418 selection, more than 99% of cells expressed α-sarcomeric actin. Immunocytological and ultrastructural analysis demonstrated that, the selected cardiomyocytes were highly differentiated. Our results represent a simple genetic manipulation used to product essentially pure cardiomyocytes from differentiating ESCs. It may facilitate the development of cell therapy in heart diseases.Key words: Embryonic stem cells, α-myosin heavy chain promoter, cardiomyocytes, differentiation, genetic enrichment

    One-step synthesis of high purity silicon carbide powder

    Get PDF
    Silicon carbide (Sic) powder was synthesized from liquid silicon in one step at the presence of a catalyst bar consisting of silica and carbon. The silicon carbide powders were formed by the carbothermal reaction between liquid silicon and gaseous CO, and the average particle size (D-50) of the as-prepared silicon carbide powder was 0.41 mu m. The powder was characterized by XRD, SEM, particle size analysis and elemental analysis. The mechanism for the formation of the silicon carbide powder was discussed

    Enhancing reliability and efficiency for real-time robust adaptive steganography using cyclic redundancy check codes

    Get PDF
    The development of multimedia and deep learning technology bring new challenges to steganography and steganalysis techniques. Meanwhile, robust steganography, as a class of new techniques aiming to solve the problem of covert communication under lossy channels, has become a new research hotspot in the field of information hiding. To improve the communication reliability and efficiency for current real-time robust steganography methods, a concatenated code, composed of Syndrome–Trellis codes (STC) and cyclic redundancy check (CRC) codes, is proposed in this paper. The enhanced robust adaptive steganography framework proposed is this paper is characterized by a strong error detection capability, high coding efficiency, and low embedding costs. On this basis, three adaptive steganographic methods resisting JPEG compression and detection are proposed. Then, the fault tolerance of the proposed steganography methods is analyzed using the residual model of JPEG compression, thus obtaining the appropriate coding parameters. Experimental results show that the proposed methods have a significantly stronger robustness against compression, and are more difficult to be detected by statistical based steganalytic methods

    Converting Layered Zinc Acetate Nanobelts to One-dimensional Structured ZnO Nanoparticle Aggregates and their Photocatalytic Activity

    Get PDF
    We were successful in synthesizing periodic layered zinc acetate nanobelts through a hydrothermal solution process. One-dimensional structured ZnO nanoparticle aggregate was obtained by simple thermal annealing of the above-mentioned layered ZnO acetate nanobelts at 300 °C. The morphology, microstructure, and composition of the synthesized ZnO and its precursors were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and infrared spectroscopy, respectively. Low angle X-ray diffraction spectra reveal that as-synthesized zinc acetate has a layered structure with two interlayer d-spacings (one is 1.32 nm and the other is 1.91 nm). SEM and TEM indicate that nanobelt precursors were 100–200 nm in width and possesses length up to 30 μm. Calcination of precursor in air results in the formation of one-dimensional structured ZnO nanoparticle aggregates. In addition, the as-prepared ZnO nanoparticle aggregates exhibit high photocatalytic activity for the photocatalytic degradation of methyl orange (MO)

    Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive escherichia coli (AIEC) in immune cells

    Get PDF
    Adherent invasive Escherichia coli (AIEC) have been implicated as a causative agent of Crohn's disease (CD) due to their isolation from the intestines of CD sufferers and their ability to persist in macrophages inducing granulomas. The rapid intracellular multiplication of AIEC sets it apart from other enteric pathogens such as Salmonella Typhimurium which after limited replication induce programmed cell death (PCD). Understanding the response of infected cells to the increased AIEC bacterial load and associated metabolic stress may offer insights into AIEC pathogenesis and its association with CD. Here we show that AIEC persistence within macrophages and dendritic cells is facilitated by increased proteasomal degradation of caspase-3. In addition S-nitrosylation of pro- and active forms of caspase-3, which can inhibit the enzymes activity, is increased in AIEC infected macrophages. This S-nitrosylated caspase-3 was seen to accumulate upon inhibition of the proteasome indicating an additional role for S-nitrosylation in inducing caspase-3 degradation in a manner independent of ubiquitination. In addition to the autophagic genetic defects that are linked to CD, this delay in apoptosis mediated in AIEC infected cells through increased degradation of caspase-3, may be an essential factor in its prolonged persistence in CD patients

    Hydrothermally Grown ZnO Micro/Nanotube Arrays and Their Properties

    Get PDF
    We reported the optical and wettability properties of aligned zinc oxide micro/nanotube arrays, which were synthesized on zinc foil via a simple hydrothermal method. As-synthesized ZnO micro/nanotubes have uniform growth directions along the [0001] orientations with diameters in the range of 100–700 nm. These micro/nanotubes showed a strong emission peak at 387 nm and two weak emission peaks at 422 and 485 nm, respectively, and have the hydrophobic properties with a contact angle of 121°. Single ZnO micro/nanotube-based field-effect transistor was also fabricated, which shows typical n-type semiconducting behavior

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Is PTEN loss associated with clinical outcome measures in human prostate cancer?

    Get PDF
    Inactivating PTEN mutations are commonly found in prostate cancer, resulting in an increased activation of Akt. In this study, we investigate the role of PTEN deletion and protein expression in the development of hormone-refractory prostate cancer using matched hormone-sensitive and hormone-refractory tumours. Fluorescent in situ hybridisation and immunohistochemistry was carried out to investigate PTEN gene deletion and PTEN protein expression in the transition from hormone-sensitive to hormone-refractory prostate cancer utilising 68 matched hormone sensitive and hormone-refractory tumour pairs (one before and one after hormone relapse). Heterogeneous PTEN gene deletion was observed in 23% of hormone sensitive tumours. This increased significantly to 52% in hormone-refractory tumours (P=0.044). PTEN protein expression was observed in the membrane, cytoplasm and the nucleus. In hormone sensitive tumours, low levels of cytoplasmic PTEN was independently associated with shorter time to relapse compared to high levels of PTEN (P=0.028, hazard ratio 0.51 (95%CI 0.27–0.93). Loss of PTEN expression in the nucleus of hormone sensitive tumours was independently associated with disease-specific survival (P=0.031, hazard ratio 0.52, 95%CI 0.29–0.95). The results from this study demonstrate a role for both cytoplasmic and nuclear PTEN in progression of prostate cancer to the hormone-refractory state
    corecore