文章编号: 1000-324X(2008)02-0243-04

一步法合成高纯度碳化硅粉体的研究

叶鑫南¹,赵中玲²,兰 琳¹,黄金秋¹,林昆仑¹,陈立富¹

(1. 厦门大学 特种先进材料实验室, 化学化工学院, 厦门 361005; 2. 黑龙江电力职工大学, 哈尔 滨 150003)

摘要:利用液态硅为原料,以碳和二氧化硅粉末组成的混合物作为催化剂,通过液态硅与一氧化碳之间的气-液相碳热反应,一步合成了高纯度的碳化硅微细粉体,制得的碳化硅粉体的平均颗粒尺寸为 D₅₀=0.41μm.利用 XRD、SEM、激光粒度分析和元素分析对粉体进行了表征,并讨论了碳化硅粉体的形成机理.
 关键词:碳化硅粉体,液态硅;气相反应;液相反应;碳热还原

中图分类号: TB383 文献标识码: A

One-step Synthesis of High Purity Silicon Carbide Powder

YE Xin-Nan¹, ZHAO Zhong-Ling², LAN Lin¹, HUANG Jin-Qiu¹, LIN Kun-Lun¹, CHEN Li-Fu¹

(1. Advanced Materials Laboratory, Xiamen University, Xiamen 361005, China; 2. Heilongjiang Worker University of Electric Power, Harbin 100530, China)

Abstract: Silicon carbide (SiC) powder was synthesized from liquid silicon in one step at the presence of a catalyst bar consisting of silica and carbon. The silicon carbide powders were formed by the carbothermal reaction between liquid silicon and gaseous CO, and the average particle size (D_{50}) of the as-prepared silicon carbide powder was 0.41μ m. The powder was characterized by XRD, SEM, particle size analysis and elemental analysis. The mechanism for the formation of the silicon carbide powder was discussed.

Key words: silicon carbide powder; liquid silicon; gas-phase reaction; liquid-phase reaction; carbothermal reduction

1 引言

碳化硅 (SiC) 粉体的制备方法在有关文献中已 经进行了全面和系统的综述^[1-3].目前生产中最常 用的为碳热法 (Acheson),是在电阻炉中将石英 (二 氧化硅) 和焦碳 (碳) 加热到 2000°C 以上,生成粗 的 α-SiC 粉体^[1,3].反应后的样品中通常存在多余 的碳和石英,一般将样品加热到 600°C 以上氧化去 除多余的碳,用氢氟酸浸泡去除多余的石英,将样 品碾磨和球磨以减小粒度,经过分级处理得到不同 尺寸的 α-SiC 粉体.

根据碳热法原理,陈立富^[4]以硅酸乙酯和酚 醛树脂为原料,用沉淀法制备前驱体, 1500°C 经

碳热还原反应制得粒度分布范围窄、球状的亚微米 SiC 粉体. Martin 等^[5] 以硅溶胶和碳黑为原料, 经冷冻干燥后制备前驱体,在1500°C 经碳热还原 反应制得亚微米级的 SiC 粉体. 潘顺龙等^[6] 以水玻 璃和碳黑为原料,采用沉淀 - 喷雾干燥法制备反应 前驱体,在1500°C 下,经碳热还原反应合成晶粒尺 寸为纳米级的 SiC 粉体.这些方法都实现了在较低 温度下制备超细 SiC 粉体的目的,但是同时也都存 在着原料处理工艺复杂,直接得到的粉体纯度不高 等缺点.本研究提出一种新的 SiC 粉体制备方法, 不需要进一步处理即可得到高纯度亚微米 β-SiC 粉 体.

收稿日期: 2007-03-29, 收到修改稿日期: 2007-05-25 基金项目: 福建省先进陶瓷重大专项基金 (2005HZ02-1); 福建省重点实验室基金 (2006L2003) 作者简介: 叶鑫南 (1983-), 男, 助理工程师. 通讯联系人: 兰 琳. E-mail: xmutc@xmu.edu.cn

2 实验

实验所用的原料包括硅粉 (纯度 >99%, ϕ 70 μ m, 上海化学试剂厂), 二氧化硅 (纯度 >99%, ϕ 15nm, Degussa, 德国) 和聚丙烯腈 (PAN, 本实验室制备, 用粘度法测量 M_w =1.3×10⁵g/mol). 所有材料不需 任何处理直接使用.

把二氧化硅粉末加入到聚丙烯腈 (PAN) 溶液 中(溶剂为二甲基甲酰胺, DMF, PAN 在溶液中的 浓度为 10%), 二氧化硅相对于 PAN 的含量为 10%; 用机械搅拌器搅拌 5h 使两者混合均匀,将得到的 液体通过一个 ϕ 1.5mm 的孔挤出到蒸馏水浴中,样 品凝固成型,所得样品反复用蒸馏水洗涤以彻底去 除 DMF 溶剂,直接将湿的样品放入矩形钢模内以 20MPa 的压力制成条状的生胚,干燥后,将样品在 空气中于 204 °C 氧化 8h; 以高纯氮气作为保护气 体将氧化后的样品在 1000°C 下碳化 30min,使 PAN 转化为碳.处理后的样品实质上是在碳基体上填充 着二氧化硅的复合材料.为了定量测量该复合材料 样品中二氧化硅的含量,将其在空气中于 700°C 处 理 1h,完全去掉所含的碳,余下的就是二氧化硅, 这样得到其化学组成为二氧化硅 14%,碳 86%.

下例是一个典型的合成实验.如图 1 所示,将 碳化的条状样品 (0.51g) 放入装有硅粉 (2.53g) 的高 纯度氧化铝坩埚中 (坩埚的氧化铝含量为 99.5%), 氧化铝坩埚放到一个更大的石墨坩埚中,然后在石 墨坩埚上加石墨盖后放入石墨加热炉内,炉内充高 纯氩气 (>99.9995%),用机械真空泵抽到 500Pa.石 墨盖没有螺纹,只是松松地盖在坩埚上面,没有密 封的作用.整个系统以 20°C/min 的升温速率加热 到 1550°C 保温 60min.实验过程中定期抽真空将压 力保持在 500Pa. 保温后,炉子自然冷却,对得到的 样品进行表征.为了比较,进行了两组对比实验,

图 1 碳化硅粉体合成装置示意图

Fig. 1 Schematic of the assembly for silicon carbide powder synthesis

一是没有加入上述的碳化样品条,另一是加入了 不含二氧化硅粉末的碳化样品条(该样品条的制备 除了第一步没有在 PAN 溶液中加入二氧化硅粉末 外,其余步骤与前述相同).所有的实验至少重复三次.

X 射线衍射 (XRD, X'pert PRO, PANALYTIC Co.) 用作粉体物相分析; 为了观察其形貌, 将粉体 加入到丙酮中超声分散 10min. 滴一滴悬浮液到铝 制样品座上, 等丙酮挥发后, 直接在 SEM(扫描电 镜, LEO-1530, LEO Co.) 上观察; 粉体的粒度及 其分布利用激光粒度仪测试 (OMEC, 型号 LS-POP-III), 该仪器的测量粒度下限为 0.27µm; 样品中的碳 元素由碳硫分析仪 (EMIA-320V, HORIBA Co.) 测 定, 氧元素由氧氮联测仪 (EMGA-620W, HORIBA Co.) 测定. 在假定样品仅由碳、氧、硅组成的前提 下, 硅含量通过计算得到.

3 实验结果

当没有加入碳化样品条或者加入不含有二氧 化硅粉末的碳化样品条时,氧化铝坩埚内的产物为 坚硬、银灰色的块体 (由于热膨胀系数不同,冷却 后氧化铝坩埚出现了裂纹);而当加入含有二氧化硅 的碳化样品条时,坩埚里原来黑色的硅粉变成了非 常疏松的颜色均匀的灰白色粉体 (样品代号 X-06). 图 2 是银灰色块体与 X-06 粉体的 XRD 谱线.可以 看出,银灰色的块体为硅,而 X-06 粉体的谱线对 应于 β-SiC 的衍射峰.即在含有二氧化硅粉末的碳 化样品条的作用下,最终产物为高纯度的 β-SiC 粉 末,其中没有发现作为原料的硅、碳和二氧化硅.

表 1 列出了 X-06 粉体的化学组成. 作为对比, 将美国 Superior-graphite Co. 的 Grade 059 粉体也

图 2 (a) 银灰色块体和 (b)X-06 粉体的 XRD 图谱 Fig. 2 XRD patterns of (a) the silver-gray bulk from the reaction product without the carbonized bars, and (b) the X-06 powder

做了相同的分析,此外表中还列出了根据化学分子 式计算出的 SiC 的理论组分.化学分析表明本研究 所合成的碳化硅粉体纯度很高,这同 XRD 分析的 结果是一致的.

图 3 及表 2 为 X-06 和 Grade 059 SiC 粉末的激 光粒度分析结果.这两种粉体的 Wadell 球形度 (等 表面积球径与等体积球径之比的平方)都接近 1,说 明它们在形状上基本是等轴的; X-06 SiC 粉末的 平均粒径只有 0.41 μ m,小于 Grade 059 SiC 粉末的 0.51 μ m,这与它们比表面积差异是一致的. Grade 059 SiC 中 <0.2 μ m 的 SiC 粉末含量接近零,而 X-06 SiC 粉末中,约有 10% 粒度 <0.2 μ m.

图 4 是通过 SEM 观察到的 Grade 059 以及 X-06 SiC 粉体的微观形貌.可以看出,两者都是亚微米

表 1 粉体的化学组成 (wt%) Table 1 Chemical composition of X-06 SiC powder (wt%)

	=		
Material	$\operatorname{Carbon}/\%$	Oxygen/%	Silicon/%
X-06	$29.6{\pm}0.18$	$1.2{\pm}0.12$	69.2
Grade 059	$33.0 {\pm} 0.23$	$1.0 {\pm} 0.13$	66.0
Pure SiC	30.0	0	70.0

级粉末,平均粒度相差不大.不过 Grade 059 粉末 具有非常明显的棱角,这是因为该微细粉末是由大 颗粒通过机械粉碎的方法制备的; X-06 粉末的边 角比较光滑,从后面的讨论可知,这是由于该粉末 是通过气相反应一步生成的,没有经过任何的后续 处理.

表 2 激光粒度分析结果

Table 2 Particle analysis of Grade 059 and X-06 SiC powders

Properties	Grade 059 SiC	X-06 SiC
$D_{10}/\mu{ m m}$	0.37	0.23
$D_{25}/\mu{ m m}$	0.44	0.31
$D_{50}/\mu{ m m}$	0.51	0.41
$D_{75}/\mu{ m m}$	0.59	0.50
$D_{90}/\mu{ m m}$	0.64	0.60
Specific surface area $/m^2 \cdot g^{-1}$	12.36	16.65
Volume equivalent diameter/ μ m	0.51	0.41
Surface area equivalent diameter/ μ m	0.49	0.36

图 4 (a)Grade 059 SiC 粉末与 (b)X-06 SiC 粉末的 SEM 照片 Fig. 4 SEM photographs of (a) Grade 059 SiC powder and (b) X-06 SiC powder

4 讨论

从文献 [1] 可知, 熔融的硅转化为碳化硅有几 种可能的机理. 熔融的硅可能同碳化后样品条中 的碳发生反应生成碳化硅. 但是通过对比实验发 现,加入不含二氧化硅的碳化样品条,所得的产物 仍然是硅,排除了碳化样品条与液态硅反应生产 SiC 粉末的可能. 这是因为当液态硅与碳接触时, 立即在碳表面形成一层 SiC 表面层,阻止反应的进 一步进行,因此液态硅与碳反应生成 SiC 的速度非 常慢.

另外一种生成 SiC 的可能机理是在炉子中含 有一定的氧分压,因此存在一定浓度的 CO,这样 就可能通过反应 (1) 生成 SiC 粉末^[7]. 但是通过对 比实验,不加入碳化样品条,所得产物仍然是硅, 没有发生明显的变化,排除了炉子内的气氛导致 SiC 生成的可能.

 $2Si(l,g) + CO(g) \rightarrow SiC(s) + SiO(g)$ (1)

由此推断在本工作中,碳化硅是通过气相反应 生成的,而且碳化样品条中的二氧化硅起到了关 键的作用.在本研究中,碳化样品条中的二氧化硅 与碳首先发生反应生成 CO 和 SiO 气体^[8]:

 $SiO_2(s)+C(g)→SiO(g)+CO(g)$ (2) 然后根据反应 (1),液态硅或者硅蒸气与 CO 反应 生成 SiC. 也就是说碳化硅中的碳是通过一氧化碳 气体的形式提供的.这个反应的自由能可通过以 下公式计算 ^[9]:

$$\Delta G_T^0 = -144410 + 72.77T \tag{3}$$

当 T=1550°C (1823K) 时, 计算可得 $\Delta G_T^0 =$ -11.75kJ/mol. 负的自由能表明从热力学上来说这 个反应是可行的. 在热力学平衡状态, 一氧化碳分 压 ($P_{\rm CO}$) 和一氧化硅分压 ($P_{\rm SiO}$) 是平衡的, 其数值 取决于热力学平衡常数 ($\kappa_{\rm p}$)

$$\Delta G_T^0 = -RT \ln \kappa_{\rm p} = -RT \ln \left(\frac{P_{\rm SiO}}{P_{\rm CO}}\right) \tag{4}$$

在 $T=1550^{\circ}$ C时,计算可得 $\frac{P_{SiO}}{P_{CO}}=2.17$.

最初,我们认为反应(2) 是反应(1)所需一氧 化碳的唯一提供者,也就是说反应(2)中所生成的 一氧化硅蒸气在抽真空时被排出了炉外,没有进 一步参与任何反应.根据反应(1),在本研究中生成 1.75g 碳化硅粉体需要 1.23g 的一氧化碳或者 1.32g 的二氧化硅.但是通过计算发现,实验中二氧化硅 (SiO₂=14%×0.51=0.07g)的含量太低,不能产生足 够的一氧化碳.所以认为一氧化硅蒸气与碳化样 品中的碳或者外部的大石墨坩埚按照反应 (5) 发生 了反应以提供更多的一氧化碳 ^[10,11]:

SiO(g)+2C(s)→SiO(s)+CO(g) (5) 这个反应中的一氧化硅也可能来源于反应 (2),在 热力学平衡状态,反应 (5)和反应 (1)相互作用,以 维持 <u>Paio</u> =2.17,不断供应一氧化碳保证了反应 (1) 的进行.显然本研究中的一氧化硅是留在了坩埚 内并在其中循环,而不是离开了这个系统.换句话 说,一氧化硅作为中间产物,保证碳化硅形成所需 要的一氧化碳的供应.因为开始反应时原料体系 中只含有硅、碳和二氧化硅,所以本研究所形成的 碳化硅粉体有较高的纯度.

5 结论

利用液态硅为原料,以碳和二氧化硅粉体组成 的混合物作为催化剂,一步合成了高纯度的碳化 硅微细粉体.反应过程中,首先催化剂中的碳和二 氧化硅发生碳热还原反应生成一氧化碳和一氧化 硅,所生成的一氧化碳气体同熔融的硅通过碳热 反应生成碳化硅和一氧化硅,而一氧化硅进一步 同碳或者石墨反应生成一氧化碳,持续提供生成 碳化硅所需的一氧化碳.可见,碳化硅粉体是通过 一氧化碳进行气相传递与液态硅反应生成,所以 最终生成高纯度的碳化硅粉体.

参考文献

- Friedrich Schröder.Gmelin Handbook of Inorganic Chemistry, 8th edition, Berlin: Springer-Verlag, 1986. 178–185.
- [2] Michael B. Bever. Encyclopedia of Materials Science and Engineering, vol 6. New York: Pergamon Press, 1986. 4403–4408.
- [3] 时利良,赵宏生,闫迎辉,等.材料导报, 2006, 20 (6): 239-242.
- [4] 陈立富 (CHEN Li-Fu). 无机材料学报 (Journal of Inorganic Materials), 1994, 9 (4): 465-470.
- [5] Martin H P, Ecke R, Muller E. J. Euro. Ceram. Soc., 1998, 18: 1737–1742.
- [6] 潘顺龙,杨岩峰,张敬杰,等 (PAN Shun-Long, et al). 无机 材料学报 (Journal of Inorganic Materials), 2006, 21 (6): 1319–1324.
- [7] Henry N. Baumann Jr. J. Electrochemical Soc., 1963, 110
 (4): 298–306.
- [8] Kuhn W E. J. Electrochemical Soc., 1963, 110 (4): 298– 306.
- [9] 黄希枯.钢铁冶金原理,第1版.北京:冶金工业出版社, 1981. 295-300.
- [10] Okada K, Kato H, Nakajima K. J. Am. Ceram. Soc., 1994, 77 (6): 1691–1693.
- [11] Kennedy P, North B. Proc. Br. Ceram. Soc., 1983, 33: 1–15.