1,210 research outputs found

    Andreev interferometry as a probe of superconducting phase correlations in the pseudogap regime of the cuprates

    Full text link
    Andreev interferometry - the sensitivity of the tunneling current to spatial variations in the local superconducting order at an interface - is proposed as a probe of the spatial structure of the phase correlations in the pseudogap state of the cuprate superconductors. To demonstrate this idea theoretically, a simple tunneling model is considered, via which the tunneling current is related to the equilibrium phase-phase correlator in the pseudogap state. These considerations suggest that measurement of the low-voltage conductance through mesoscopic contacts of varying areas provides a scheme for accessing phase-phase correlation information. For illustrative purposes, quantitative predictions are made for a model of the pseudogap state in which the phase (but not the amplitude) of the superconducting order varies randomly, and does so with correlations consistent with certain proposed pictures of the pseudogap state.Comment: 9 pages, 5 figures; 3 references adde

    Supply chain integration strategies in fast evolving industries

    Get PDF
    Purpose - The purpose of this paper is to define the "fast evolving industry" (FEI) and its supply chain management (SCM) challenges. The authors review and structure the literature regarding integration strategies and implementation methods to develop a strategic decision-making framework for SCM in the FEI. Design/methodology/approach - The authors conduct a review of SCM literature, including supply chain strategy, supply chain integration (SCI), agile and responsive supply chain and SCM for innovative and fast-changing industries. The authors develop a conceptual model and a decision-making framework and use four mini cases to provide support for the model and framework. Findings - The FEI, characterised by a high level of innovation and differentiation, short products/services lifecycle and high variety, is yet to be fully defined. Inherent uncertainty in FEI supply systems makes SCM in these industries a complex but strategic task for their managers. The framework and the model offered in this study, which employ a core competency concept and provide risk management strategies, offer a strategic tool for managers and scholars in the field to optimise their integration strategies and to operationalise integration decisions. Originality/value - Little research has been published on transferable and cross-industrial SCM in FEIs. This paper defines the FEI and its resource-related concerns and then offers a conceptual model and a strategic decision-making framework for SCI in FEIs

    Detection of electronic nematicity using scanning tunneling microscopy

    Full text link
    Electronic nematic phases have been proposed to occur in various correlated electron systems and were recently claimed to have been detected in scanning tunneling microscopy (STM) conductance maps of the pseudogap states of the cuprate high-temperature superconductor Bi2Sr2CaCu2O8+x (Bi-2212). We investigate the influence of anisotropic STM tip structures on such measurements and establish, with a model calculation, the presence of a tunneling interference effect within an STM junction that induces energy-dependent symmetry-breaking features in the conductance maps. We experimentally confirm this phenomenon on different correlated electron systems, including measurements in the pseudogap state of Bi-2212, showing that the apparent nematic behavior of the imaged crystal lattice is likely not due to nematic order but is related to how a realistic STM tip probes the band structure of a material. We further establish that this interference effect can be used as a sensitive probe of changes in the momentum structure of the sample's quasiparticles as a function of energy.Comment: Accepted for publication (PRB - Rapid Communications). Main text (5 pages, 4 figures) + Supplemental Material (4 pages, 4 figures

    Association between A59V polymorphism in exon 3 of leptin gene and reproduction traits in cows of Iranian Holstein

    Get PDF
    We used the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique to screen for DNA polymorphisms of the leptin gene in 255 cows of Iranian Holstein. Amplified region is located in exon 3 of leptin gene. The genomic bovine leptin sequences, which consist of three exons, were obtained from GeneBank (Accession number U50365). Genotype frequencies in all herds were 0.588, 0.388 and 0.024 for AA, AB and BB, respectively, and allelic frequencies were 0.782 and 0.218 for A and B, respectively. We investigated effect of A59V polymorphism in the leptin gene on three reproduction traits. Significances of the genotype effects were tested using approximated F-statistic provided by SAS (v.8, GLM procedure). This study showed that genotype had no effect on open days and calving interval (NS) but had significant effect on length of pregnancy (P < 0.01). Animals with the AA genotype had higher length of pregnancy than other genotypes.Keywords: Leptin, Iranina Holstein, polymerase chain reaction-restriction fragment length polymorphism, reproduction traitAfrican Journal of Biotechnology Vol. 9(36), pp. 5997-6000, 6 September, 201

    Accelerated design of architectured ceramics with tunable thermal resistance via a hybrid machine learning and finite element approach

    Get PDF
    Abstract Topologically interlocked architectures can transform brittle ceramics into tougher materials, while making the material design procedure a cumbersome task since modeling the whole architectural design space is not efficient and, to a degree, is not viable. We propose an approach to design architectured ceramics using machine learning (ML), trained by finite element analysis data and together with a self-learning algorithm, to discover high-performance architectured ceramics in thermomechanical environments. First, topologically interlocked panels are parametrically generated. Then, a limited number of designed architectured ceramics subjected to a thermal load is studied. Finally, the multilinear perceptron is employed to train the ML model in order to predict the thermomechanical performance of architectured panels with varied interlocking angles and number of blocks. The developed feed-forward artificial neural network framework can boost the architectured ceramic design efficiency and open up new avenues for controllability of the functionality for various high-temperature applications. This study demonstrates that the architectured ceramic panels with the ML-assisted engineered patterns show improvement up to 30% in frictional energy dissipation and 7% in the sliding distance of the tiles and 80% reduction in the strain energy, leading to a higher safety factor and the structural failure delay compared to the plain ceramics
    corecore