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� Exploring the effect of angle and
number of tiles on the
thermomechanical behavior of
topologically interlocked ceramics.

� Developing a novel hybrid FEA and
ML algorithm for exploring the
performance of architectured
ceramics with uniform and varied-
angle designs.

� Finding new interlocked designs with
enhanced thermo-mechanical
performances using Neural Networks.

� Finding an optimum varied-angle
architectural design that improves
30% energy dissipation and 80% strain
energy reduction of brittle ceramics.
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a b s t r a c t

Topologically interlocked architectures can transform brittle ceramics into tougher materials, while mak-
ing the material design procedure a cumbersome task since modeling the whole architectural design
space is not efficient and, to a degree, is not viable. We propose an approach to design architectured
ceramics using machine learning (ML), trained by finite element analysis data and together with a
self-learning algorithm, to discover high-performance architectured ceramics in thermomechanical envi-
ronments. First, topologically interlocked panels are parametrically generated. Then, a limited number of
designed architectured ceramics subjected to a thermal load is studied. Finally, the multilinear percep-
tron is employed to train the ML model in order to predict the thermomechanical performance of archi-
tectured panels with varied interlocking angles and number of blocks. The developed feed-forward
artificial neural network framework can boost the architectured ceramic design efficiency and open up
new avenues for controllability of the functionality for various high-temperature applications. This study
demonstrates that the architectured ceramic panels with the ML-assisted engineered patterns show
improvement up to 30% in frictional energy dissipation and 7% in the sliding distance of the tiles and
80% reduction in the strain energy, leading to a higher safety factor and the structural failure delay com-
pared to the plain ceramics.
� 2021 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Ceramics are used in a wide range of industrial sectors, includ-
ing electronics [1], aerospace [2], medicine and biomedical devices
[3–5], owing to their excellent properties such as oxidation resis-
tance, low electrical conductivity, high refractory and maintaining
their mechanical properties at high temperatures [6]. The low ther-
mal conductivity of ceramics is used to protect space shuttles and
keep satellites safe from serious damages [2], while their thermal
stability property is critical in hypersonic flights and propulsion
applications [7]. In spite of the excellent thermomechanical prop-
erties of ceramics, they generally suffer from brittleness [6,8] that
limits their multifunctional applications where ductility and
toughness are required in addition to stiffness, strength and ther-
mal resistance. Inspiration from natural and biological materials
can assist to engineer the next generation of ceramics that can
overcome the aforementioned drawback [9,10].

Superior mechanical properties of biological species, such as a
combination of high strength and toughness, have inspired mate-
rial scientists and engineers to develop advanced high-
performance materials [11,12]. In biological composites (e.g.
bones, shells, horns and teeth), brittle organic materials such as
calcium carbonate, calcium phosphate (hydroxyapatite), and
amorphous silica [13] are employed by nature to design biomate-
rials that offer a combination of high strength, stiffness, flexibility,
fracture toughness, and wear resistance [14,15]. For example, the
fracture toughness of abalone, conch shell and nacre with a brick
and mortar microstructure [12,16], is up to seven times higher
than their material constituent, i.e., calcium carbonate [17]. Tooth
enamel, as the hardest material in vertebrates, has also shown high
toughness due to its microstructure that consists of tightly packed
hydroxyapatite rods [18]. As a universal construction principle,
these biological materials are made of hard and stiff building
blocks bonded by weaker interfaces [19]. This finely-tuned strategy
can result in deformation/failure mechanisms that enable the
amplification of toughness. For instance, the staggered architecture
in nacre-like materials can result in progressive tablet sliding and
crack blunting, deflecting, and bridging [20]. These microstructural
designs have recently inspired the development of a new class of
tough architectured structures out of brittle materials such as cera-
mic and glass [21,22].

One of the material design strategies to achieve superior
mechanical performance is developing interlocked building blocks
for architectured materials that acts as a strain hardening mecha-
nism to localize damages and spread the deformation to a larger
volume of brittle materials [19]. The resulting materials are called
topologically interlocked materials (TIMs) [23,24]. Researchers
have made considerable progress in the design and fabrication of
TIMs to enhance their energy absorption and impact resistance
capacity [25–28]. Toughness has been improved in brittle materi-
als by interlocked and segmented designs [9,25]. The toughening
mechanism is observed due to segmentation of blocks and the
existence of weak interfaces (e.g. soft polymers such as ionomer
or Ethylene-vinyl acetate (EVA) resins as an engineering replace-
ment of protein in nacre) between microscale building blocks with
tetrahedral, octahedral and cubic architectures [29–33]. These con-
figurations offer a vast design space since the architectural features
of the building blocks can be tailored by tuning their dimensions
[9,31] and interlocking angles [25,32].

Machine Learning (ML), a branch of artificial intelligence for dis-
cerning patterns from complex datasets, enables systems to learn
from existing information in order to predict new results. ML algo-
rithms have opened a great window to the horizon of all branches
of science, such as diagnosis of diseases [34], discovering drugs
[35] and image recognition [36]. Recently, ML algorithms have also
2

found their applications to material selection and exploring new
material properties [37–43]. In previous studies, different ML algo-
rithms such as deep neural networks, specifically convolutional
neural netwroks [44,45], and generative adversarial network [46]
have been used for topology optimization in order to discover
new advanced materials [37,47,48]. These studies have demon-
strated possible applications of ML in materials design, prediction
of material/structural properties, and optimizing the functionali-
ties and performance of advanced architectured structures.

Despite encouraging results of topologically interlocked panels
in impact and energy absorption, more efforts are required to first
evaluate and then optimize their performance in thermal applica-
tions. There are not sufficient studies on the thermal behavior of
bioinspired brittle materials and specifically ceramics. In this
study, the thermal performance of architectured ceramics with
topologically interlocked designs is studied and a new approach
is introduced to design architectured ceramics using a combination
of finite element analysis (FEA) and ML (Figure S1 in Supporting
Information). Here, a database of 400 panels from FEA is used to
train a model for discovering high-performance ceramic panels.
This hybrid ML-FEA model is computationally efficient for evaluat-
ing the thermal and mechanical performance of the designed
architectured ceramics. The dissipation energy through friction
between blocks, energy absorption and architectural failure based
on safety factor are explored using finite element analysis to find
high-performance architectural designs. Neural Networks are used
to explore the performance of 400,000 topologically interlocked
designs with distinct dimensions and interfacial angles between
neighboring blocks. At the end, the designs are analyzed by finite
element modelling to explore the accuracy of predictions. In Fig-
ure S1 (Supporting Information), the schematic of the design algo-
rithm is presented.
2. Design methodology

Topologically interlocked panels [25] are built from truncated
non-platonic tetrahedron ceramic blocks (see Fig. 1a). The blocks
with an interlocking angle (a and b) less than 90� are contained
by adjacent blocks, resulting in a topologically interlocked design.
A non-regular truncated tetrahedron has two planar surfaces: a
rectangle on the top and a square on the bottom (Fig. 1a). A non-
regular tetrahedron is truncated unsymmetrically from top and
bottom to ensure a square area with l� l dimensions on one side
of truncated tetrahedron is produced. Angles on the sides AA and
BB may be different (a and b in Fig. 1b). For each block two faces
are tilted outward, and the other two are tilted inward. The height
of the building block is set to be h ¼ 2:54 mm ð0:1 inchÞ and
dimensions of the rectangular section is lþ 2h� tanðaÞ and
l� 2h� tanðbÞ. The panels with different numbers of blocks,
including 3� 3, 5� 5 and 7� 7; are considered. The overall size
of the panel is set to be 10� 10 cm2. Considering two symmetry
planes, the panels have 4, 6 and 8 possibilities of different inter-
locking angles for the3� 3, 5� 5and 7� 7 structures, as reported
in Table 1, respectively. Interlocking angles studied here are 5�,
10�, 15�, 20� and 25� that result in 625, 15,625 and 390,625 com-
binations for the 3� 3, 5� 5 and 7� 7 panels, correspondingly.
Three-dimensional displacements and rotations on all four bound-
aries of the panels are constrained to make fully interlocked
geometries. These panels are fully constrained without using any
other materials between the tiles, like adhesive. A thermal load
applied to the center of the architectured panel generates trans-
verse mechanical forces and frictional interactions between blocks.
The panel also experiences an out-of-plane deformation that is dis-
tinct from the pristine ceramic panel as a baseline for comparing
the thermomechanical behaviors.



(a)                                       (b) (c)

Fig. 1. Overview of the design of the topologically interlocked panel: (a) Truncated non-regular tetrahedron. (b) Block with different angles in AA and BB surfaces and the
locking configuration of adjacent blocks in the 3 � 3-block panels. (c) Symmetry planes in the architectured panel and different angles of blocks on each side (a, b).

Table 1
All possible architectured designs by changing the angles between blocks. Each color represents an angle ða; bÞ.

Number of blocks Interlocking angles (a;bÞ Number of designs with
alternative interlocking angles

Arrangement

3� 3 5�, 10�, 15�, 20�, 25� 54 ¼ 625

5� 5 5�, 10�, 15�, 20�, 25� 56 ¼ 15625

7� 7 5�, 10�, 15�, 20�, 25� 58 ¼ 390625
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3. Finite element analysis

FEA is performed using ANSYS Workbench 2019 R3 on panels
with different numbers of building blocks and interlocking angles.
Panels with the 3 � 3 (9), 5 � 5 (25) and 7 � 7 (49) arrays of blocks
as well as 5�, 10�, 15�, 20� and 25� interlocking angles are consid-
ered. The architectured designs have two symmetry planes, one
normal to the x-direction and one normal to the y-direction (see
Fig. 1c). Material properties of non-porous alumina ceramics are
assumed to be isotropic linear elastic. Different properties of the
alumina ceramics are listed in Supporting Information, Table S1
[9]. These properties are considered constant in the range of tem-
perature analysis. Transient thermal analysis is first performed to
evaluate the thermal performance of different architectured
designs. A constant temperature (i.e., thermal load) is applied to
a circular area with a radius of 10 mm in the middle of the panel.
The rest of the panel containing edges is exposed to free convection
with a heat transfer coefficient of 10 W

m2K. Due to the fixed bound-
aries in peripheral blocks, the thermal expansion of the panel
3

results in in-plane forces between building blocks. A thermome-
chanical study is performed to explore the mechanical behavior
of the panels under the thermal load. Coulomb-Mohr failure crite-
rion (see Eq. (1)) for brittle materials is employed to evaluate the
safety factor (SF) of each design, which is the minimum of the
safety factor of all material points in the architectured ceramic
[49]:

SF ¼ min

St
r1

r1 � r3 � 0
St

r1�St
Sc
r3

r1 � 0 � r3

Sc
r3

0 � r1 � r3

8>>><
>>>:

0
BBB@
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CCCA ð1Þ

where the maximum and minimum principal stresses are repre-
sented by r1 and r3; St and Sc are tensile and compressive ultimate
strength, respectively. As shown in Fig. 2, the temperature in the
circle with a radius of 10 mm in the middle of the panels is
increased to 700 �C in 60 s then the middle circle area is kept at
700 �C for 540 s; 700 �C is picked for the maximum temperature
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Fig. 2. Temperature response of ceramic panels: (a) Transient temperature variation; Temperature distribution at the end of the analysis (t = 600 s) for (b) Plain and
architectured panels with (c) 3� 3, (d) 5� 5 and (e)7� 7 arrays of blocks.
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since the average safety factor in this condition lies between 1 and
2. This transient thermal analysis is done within 600 s. The input
and output energies of the system are equal at 600 s and the whole
panel reaches a steady-state condition. Identical temperature distri-
butions for the panels with 3� 3, 5� 5 and 7� 7 arrays of blocks
are observed as each block is perfectly in contact with adjacent
blocks (Fig. 2b to 2e). Mesh sensitivity is conducted to assure the
reliability of the FEA. The majority of the architectued panle has
been discretized by Hex dominant mesh element type, while the
middle panel experiencing contact has descetized by Tetrahedral
mesh. The maximum mesh size is set to be 10�3 m over the whole
panel, except in contact area where the maximum mesh size is
selected as 8 � 10�4 m. Therefore, the small amount of temperature
difference in Fig. 2a (1–2 �C) is due to the gaps generated to geome-
tries of building blocks where some materials between corners of
blocks are removed to achieve interlocking designs. Material
removal is causing less than 0.9% difference in the volume of struc-
tures due to the gaps.

Temperature distribution causes distinct thermal expansion at
different locations of the panels; for example, the middle tile is
exposed to a higher temperature that leads to a higher out-of-
plane deflection compared to the others. The out-of-plane deflec-
tion is due to in-plane deformation caused by a combination of
sliding, thermal buckling and bending. The in-plane thermal stress
has been computed by importing the determined temperature dis-
tribution to the mechanical module of ANSYS Workbench. The sta-
tic coefficient of friction between ceramic blocks is set at 0.24 [25].
Different thermal expansion of adjacent tiles causes sliding and
energy dissipation through contact. Displacements in all three
directions of x, y and z are fixed on all four edges of the ceramic
panels and the temporal behavior of the panels is studied. Energy
balance is calculated to observe the mechanical performance of
the panels [50]:

U ¼ Q þWt ð2Þ

Wt ¼ Estrain þ EFDE þWenv ð3Þ
4

where U, Q andWt are internal energy, thermal energy and mechan-
ical energy, respectively. Estrain, EFDE and Wenv are strain energy, fric-
tional dissipation energy (FDE) and work on the environment,
respectively. Thermal energy stored in the system is determined
by the specific heat of alumina ceramic. To compute the internal
and thermal energy of the system, ANSYS Fluent is used. At
t = 600 s, inlet and outlet of the internal energy of the system are
equal and 8.71 kJ energy is stored as internal energy. This 8.71 kJ
is separated into thermal energy Q = 8.58 kJ (98% of total internal
energy) and mechanical energy as Wt ¼ 0:13 kJ that consists of
three parts: (1) Strain energy that is the mechanical energy stored
in the system, (2) Frictional dissipation energy and (3) Work on
the surrounding environment by deflection of the architectured
panel. Mechanical energy is calculated by fixing the whole of the
plain panel and setting the displacements in all three directions
equal to zero. In this approach, the mechanical energy is equal to
the strain energy of the panel as Wenv and EFDE is set equal to zero.
The total amount of energy received by all designed architectured
panels is the same, leading to equal thermal energy and mechanical
energy for all panels. However, strain energy (Estrain), frictional dis-
sipation energy (EFDE), and work on the surrounding environment
(Wenv ) vary for alternative designed architectures.
4. Machine learning (ML)

ML is an application of artificial intelligence and a data-driven
approach to find a pattern in existing data. In this work, ML is used
to examine the thermomechanical performance of a series of alter-
native architectured ceramic panels. Interlocking angles and the
number of blocks are inputs, while safety factor, max deflection,
sliding distances, reaction forces on the boundaries, frictional dis-
sipation and strain energies are outputs of the model. Fig. 3 repre-
sents the schematic of the whole algorithm. For each of the 3� 3,
5� 5 and 7� 7-block architectured panels, 100 random designs
have been analyzed by FEA. Interlocking angles in the designs are
varied from 5� to 25�. The correlation of input parameters to out-
puts is investigated in the preprocessing step. Normalizing and
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scaling help the ML models to converge and make the training less
sensitive to the scale of features.

Middle architectured ceramic blocks interact with four sur-
rounding blocks, while blocks on edges and corners interact with
two or three blocks, respectively. The vast design space (Table 1)
is computationally expensive to be modelled only by using FEA;
ML algorithms can assist in exploring all possible designs. Multi-
layer perceptron (MLP), as a class of feedforward artificial neural
network (ANN) for the regression problem [51] is employed due
to its better performance compared to other models [52] (Support-
ing Information 3 and 4). For this purpose, MLP regressor from
Sklearn library is used in Python. Hyperparameters such as the
number of hidden layers, the L2 penalty parameter, the initial
value for learning rate and the max number of iterations are tuned
by conducting a grid search. ReLu activation function has been
used due to its higher accuracy than the logistic activation func-
tion. ReLu activation outputs directly the positive input and out-
puts the negative input to zero [53,54]. Randomly, 10% of the
dataset is picked for the test set and five-fold cross-validation is
chosen to prevent overfitting. The mean accuracy of the ML models
for predicting each output are reported in Table 2.
5. Results and discussion

In this section, the effects of interlocking angles on the thermo-
mechanical response of architectured ceramic panels are studied.
All boundary conditions and thermal loads remained unchanged
for the sake of comparison of the performance of alternative archi-
tectured ceramics. First, we compare the responses when all blocks
have identical interlocking angles. Then, ML algorithms are used to
investigate all possible panels that have building blocks with dis-
similar interlocking angles.

Fig. 4 presents safety factors, reaction forces on boundaries and
strain for plain and architectured (10� interlocking angle) ceramic
panels during a time span of 600 s. While the plain ceramic panel
fails after 50 s, all the architectured panels remain integrated over
the period of the time considered. A higher amount of strain energy
inside the plain panel and higher reaction forces on fixed bound-
aries are observed, resulting in a rapid failure compared to the
architectured ceramic. Meanwhile, for this architectured design,
about 3% of the mechanical energy is dissipated through sliding
and friction in the constitutive building blocks. The energy dissipa-
tion assists the architectured panels to resist the same thermal
load in a larger time frame. The 7� 7-block architectured panel
with uniform distribution of interlocking angle 10� presents a
higher safety factor compared to the 3� 3 and 5� 5-block
architectured panels. Architectured ceramic panels with alterna-
5

tive interlocking angles are explored in the next section to ensure
the accuracy of the comparison of the thermomechanical perfor-
mance of panels. It can be concluded that the plain panel performs
poorly compared to the designed architectures in terms of failure
resistance, the application of higher forces on the boundaries and
the development of higher strain energy.
5.1. Architectured designs with uniform interlocking angles

Architectured panels with a uniform distribution of interlocking
angles are studied here. The analysis considers all blocks having
the uniform interlocking angles; however, they can be varied from
5� to 25�. In Fig. 5, strain energy, frictional dissipation energy (FDE),
reaction force and out-of-plane deformation are presented. As seen
in Fig. 5a, the values of FDE are negligible for interlocking angles of
less than 10�. At 10� interlocking angle, FDE starts to increase and a
drop is observed in the strain energy, indicating that the sliding
begins at 10�. Frictional sliding mechanism is one of the key factors
to have better resistance to failure. Stresses and energies inside the
panels are reduced when more energy is dissipated through fric-
tion. For interlocking angles larger than 15�, FDE in the 3� 3-
block panel is higher and consequently, its average safety factor
is higher than the 5� 5 and 7� 7-block panels.

In general, less strain energy in the panels results in a lower reac-
tion force on the boundaries. As shown in Fig. 5c, for the interlocking
angles between 15� and 30�, the 3� 3-block panel has a lower force
on the boundaries and a higher safety factor compared to the other
panels. Out-of-plane deformation of the panels (Fig. 5b) with inter-
locking angles more than 15� is less than their counterparts with
lower interlocking angles. At 10�, a drop in the out-of-plane deforma-
tion is observed because the panel experiences a locking behavior
that hinders blocks from being deformed. This trend is different for
the 5 � 5-block architectured panels because the deflection depends
on the area where the temperature is applied (a circle with a diam-
eter of 10 mm that is ~3% of the total area of the top surface). Except
the 3� 3-block panel, the heat is applied to more than 1 block. As
expected for the higher interlocking angles, more sliding occurs as
shown in Fig. 5d. The results show that the sliding distance, which
represents the sum of the path of the movement, is highly correlated
to the panel safety factor. Even though the 3� 3-block architectured
panel has less contact areas, this panel reveals more sliding and a
higher safety factor. Higher sliding is a representation of dissipating
more energy, the energy that can be stored in the panel causing
stress inside the panel. In the next section, ML algorithms are
adopted to explore the dependence of the architectures with variable
angles on the outputs.
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5.2. Exploring designs with variable angles using machine learning

Data from FEA is imported to ML models to find better-
performing architectured panels with respect to each output (e.g.
strain energy and out-of-plane deformation). These panels are
made concerning the accuracies presented in Table 2. To enhance
the quality of data, preprocessing has been done over ML models.
The preprocessing includes determining the correlation of each
interlocking angle to output, which shows some of the interlocking
angles in designs have a small correlation to the outputs. Low cor-
relation can reduce the accuracy of the ML models. Exploring cor-
relation indicates that some of the interlocking angles do not affect
outputs; for example, the interlocking angle 2 (A2Þ has a negligible
correlation to the FDE of the 3� 3-block architectured panel. These
slightly correlated angles are removed in the training process as
identified as h in Table 2. Different numbers of building blocks as
inputs need three different ML models (see Section 4) with specific
hyperparameters to be developed. In Fig. 6, correlations between
inputs and outputs are shown in different designs. It is observed
that interlocking angles in structures with a higher number of
building blocks have less correlation to the outputs (Fig. 6e and
6f). This can be addressed by having a small amount of training
data for the 7� 7-block panel compared to the 3� 3-block panel.

Highly correlated parameters can reveal great information
about which interlocking angles should be controlled in each archi-
tectured panel. For example, all four interlocking angles in the
3� 3-block panel have a higher negative correlation to the total
strain energy over the whole panel, suggesting small interlocking
angles bring a higher amount of strain energy. Maximum and min-
imum strain energies, safety factor, total frictional dissipation
through contacts, sliding distances, out-of-plane deformation and
reaction force on boundaries are presented. ML algorithms suggest
a series of designs that can achieve maximum or minimum of the
aforementioned outputs. In this regard, panels with more similar
6

interlocking angles are selected since they are more favorable in
terms of manufacturing [55][56] (see Figure S6). Some interlocking
angles have a small impact on the output because of that any val-
ues can be picked for those angles with h in Table 2.

Panels with a greater number of inputs need more data to pre-
dict accurately. The mean accuracy for the output parameters in
the 7� 7-block architectured panel is much less than the 3� 3
and 5� 5-block panels; this indicates that training a model for
the 7� 7-block panel is more challenging than the other architec-
tured panels.

Here, we explore the accuracy of predicted output values by ML
through comparison with the FEA results. In Fig. 7, the perfor-
mance of the suggested varied-angle architectured panels from
ML is compared with the FEA results for the architectured panels
with uniform interlocking angles across the panel. The maximum
and minimum values of the outputs are reported in Fig. 7. In most
cases, ML could increase the maximum and decrease the minimum
of outputs. However, ML could not increase the maximum out-of-
plane deformation and FDE in the 7� 7-block architectured panel
due to the low amount of training data. The deformations and FDE
in the 3� 3 and 5� 5-block panels can be increased by using ML
and designing varied-angle architectured panels. In the 3� 3-
block panel, 15%, 7% and 30% improvements in maximum out-of-
plane deformation, sliding distance and frictional dissipation
energy are observed, respectively. In addition, 70%, 80% and 30%
reductions in the minimum out-of-plane deformation, sliding dis-
tance, and frictional dissipation energy are observed, respectively.
In the 5� 5-block panel, 3%, 35% and 4% improvements in maxi-
mum out-of-plane deformation, sliding distance and FDE are
observed, respectively. In addition, 70%, 15% and 52% reductions
in minimum out-of-plane deformation, sliding distance and FDE
are observed in the results, respectively. ML is not providing new
designs to maximize or minimize the force on the boundaries,
strain energy, and safety factor.
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5.3. Validation

Proposed designs from the ML algorithms are explored by FEA
in Fig. 8 to further validate the ML predictions. For this purpose,
three representative designs and associated outputs, which are
FDE and sliding distance in the 3� 3-block architectured panel
and out-of-plane deformation in the 5� 5-block architectured
panel, are chosen from Table 2 (bolded) to be investigated.

To achieve the maximum FDE for varied-angle architectured
panels of 3 � 3, ML suggested selecting angle 1ðaÞ ¼ 15

�
;

angle 3 cð Þ ¼ 20
�
and angle 4ðdÞ ¼ 15

�
: Interlocking angle 2 bð Þ in
7

this design can be varied due to a small correlation to the frictional
dissipation energy (FDE). Fig. 8b indicates the effect of changing
interlocking angle 2(bÞ on the frictional dissipation energy of the
architectured panel. This horizontal blue line indicates that inter-
locking angle 2(bÞ does not play a significant role in the maximiza-
tion of FDE. To validate the results of ML for varied-angle
architectured panels, a second round of FEA is conducted. In
Fig. 8b and 8c the red points are representation of FEA results of
varied-angle designs suggested by ML. Maximum 5% difference is
observed in results from ML and FEA for varied-angle panels. The
horizontal blue line associated with ML varied-angle architectured
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Fig. 5 (continued)

Table 2
ML algorithms for the architectured ceramic designs with the minimum and maximum outputs. Each output and the mean accuracy for each model are reported.

3 � 3-block panel A1 A2 A3 A4 A5 A6 A7 A8 Mean accuracy (%) R2 error

Max strain energy 5� 5� 5� 5� – – – – 84 0.96
Min strain energy 25� 25� 25� 25� – – – –
Max deformation 5� 5� 25� 15� – – – – 73 0.77
Min deformation 25� 25� 5� 25� – – – –
Max avg. safety factor 25� 25� 25� 25� – – – – 94 0.95
Min avg. safety factor 5� 5� 5� 25� – – – –
Max total FDE 15� h 20� 15� – – – – 65 0.32
Min total FDE 5� h 5� 5� – – – –
Max total sliding distance 15� 20� h 10� – – – – 72 0.93
Min total sliding distance 5� 5� h 5� – – – –
Max force on the boundaries 5� 5� 15� 5� – – – – 74 0.94
Min force on the boundaries 25� 25� 25� 25� – – – –

5 � 5-block panel A1 A2 A3 A4 A5 A6 A7 A8 Mean accuracy (%) R2 error

Max strain energy 5� 5� 5� 5� 5� 5� – – 85 0.71
Min strain energy 25� 25� 25� 25� 25� 25� – –
Max deformation 5� 25� 5� 25� 5� 5� – – 86 0.70
Min deformation 25� 5� 25� 5� 25� 25� – –
Max avg. safety factor 25� 5� 25� 5� 25� 25� – – 85 0.88
Min avg. safety factor 5� 5� 5� 5� 5� 5� – –
Max total FDE 25� 5� 5� 5� 5� 5� – – 60 0.85
Min total FDE 5� 25� 25� 25� 5� 25� – –
Max total sliding distance 5� 25� 5� h 25� 25� – – 71 0.32
Min total sliding distance 5� 5� 5� h 5� 5� – –
Max force on the boundaries 5� 5� 5� 5� 5� 5� – – 70 0.89
Min force on the boundaries 25� 25� 25� 25� 25� 25� – –

7 � 7-block panel A1 A2 A3 A4 A5 A6 A7 A8 Mean accuracy (%) R2 error

Max strain energy 5� 5� 25� 5� 25� 5� 5� 25� 60 0.62
Min strain energy 25� 15� 15� 25� 20� 25� 25� 15�
Max deformation 5� 25� 25� 5� h 5� 5� h 67 0.36
Min deformation 5� 5� 5� 5� h 25� 25� h
Max avg. safety factor 25� 25� 25� 25� 5� 25� 25� 5� 80 0.71
Min avg. safety factor 5� 5� 5� 5� 5� 5� 5� 5�
Max total FDE 5� 25� 5� 25� h 25� 25� h 54 0.13
Min total FDE 25� 5� 20� 5� h 5� 5� h
Max total sliding distance 25� h 5� h 5� 25� h 25� 57 0.13
Min total sliding distance 25� h 25� h 25� 10� h 5�
Max force on the boundaries 5� 5� 25� 25� 5� h 25� 25� 75 0.58
Min force on the boundaries 20� 15� 5� 5� 25� h 20� 5�

Bolded text represents the structures that have been further investigated by FEA.
h represents the angles that have a small correlation to the outputs.
A1-A8 represent the angles that are shown in Fig. 6.
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panels is higher than the black line associated with the uniform-
angle design. This indicates that the varied-angle architectured
panels, found by ML and validated by FEA, lead a higher maximum
FDE. The same reasoning can be used for the sliding distance and
the varied-angle architectured panel with a ¼ 15

�
; b ¼ 20

�
;

10
c and d ¼ 10
�
(see Fig. 8c). In Fig. 8d, the out-of-plane deformation

of the varied-angle architectured panel with the 5� 5 arrays of
blocks is compared with the uniform-angle panel. It is shown that
the maximum out-of-plane deformation of the 5� 5-block archi-
tectured panel is 3% increased for the varied-angle panel.
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6. Concluding remarks

Despite the excellent thermal stability of ceramics, most of the
research endeavors have focused on evaluating the mechanical
performance of ceramics under quasi-static or impact loading
rather than a thermal stimulus. In this study, FEA is used to evalu-
ate the thermomechanical performance of architectured ceramics
made of interlocked building blocks. It is shown that the architec-
tured designs outperform monolithic ceramics in the energy dissi-
pation, resulting in a 67% reduction in forces on the fixed
boundaries and a 90% increase in the safety factor. We have pro-
posed a systematic approach by adopting a hybrid ML-FEA algo-
rithm to design high-performance architectured ceramics
experiencing thermal loads. In this analysis, the out-of-plane
deformation, strain and frictional dissipation energies, reaction
forces, safety factor and sliding distances of adjacent blocks in
the architectured ceramics made of interlocked building blocks
are explored. MLP algorithm is used to find the designs with max-
imum and minimum outputs by changing the angle of cuts
11
between the building blocks. It is shown that the suggested designs
by ML-FEA algorithms perform better for the desired outputs. For
instance, these designs can dissipate 30% more energies through
friction and 7% more energies sliding between blocks compared
to the interlocked architectures with constant cutting angles. It is
demonstrated that the architectured ceramic panels perform bet-
ter in a thermomechanical environment compared to the mono-
lithic ceramics. ML tool is computationally efficient to conduct a
parametrical study to explore the effects of the architectural
parameters on multifunctional performance of architectued matri-
als. ML algorithms can predict desired outputs, 300 times faster
than using finite element software, making the search for high-
performance architectured materials possible in a vast design
space. Once the MLmodel is properly trained, it can predict numer-
ical results without an access to a commercial FEA software that is
of substantial importance in material design and optimization.

In this algorithm, ML results are investigated by conducting a
second round of FEA. Maximum 5% error was found in the results
from FEA and ML in the validation process. Although this error
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can be acceptable but increasing number of parameters in the
design algorithm will increase the error.

Instead of using FEA data for training ML algorithms, there is a
possibility to also use both experimental and FEA data to increase
the accuracies. In future studies, experimental data can be pro-
duced by employing a laser cutting technique to experimentally
validate the numerical and ML-assisted predictions (see Support-
ing Information, Figure S6 [8,55]). The novel paradigm offered by
advanced additive/subtractive manufacturing along with ML tools
can facilitate the development of advanced ceramic materials that
can prevail material property tradeoffs found in monolithic mate-
rials (e.g. toughness in brittle materials). This work not only pro-
vides a new method that harnesses simulation data and ML to
design future bioinspired, architectured and composite materials
in an experience-free and systematic manner, but also opens a
new avenue to address various inverse design problems in differ-
ent industrial sectors such as aerospace, automotive, transporta-
tion and energy.
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