32 research outputs found

    Social network sites as educational factors

    Get PDF
    Background: In this present era, the technology development has established certain type of communication. Nowadays education as the fundamental principle in transferring cognition to the learners has found various methods. Recently the concept that social networks could be effective tool in easing the achievement to the educational goals has been under attention. Therefore, this investigation is trying to find out whether, the social networks could play role on the process of education among students? Materials and Methods: This cross sectional descriptive study was performed on 1000 students from 7 medical universities in 2015. The data collection tool was questionnaire that was approved Cronbach's alpha was 0.85. Meanwhile its validity was confirmed too. The obtained data were analyzed by the descriptive statistic, ANOVA, Turkey and used X2 SPSS-19. Results: In this investigation, 940 subjects were under study. 85 used daily the social network. The highest usage was attributed to the Telegram. 52 preferred image suitable for transferring of information. Even though, 73 believed that these networks have significant effects on coordinating of students with in university charges. Conclusion: Considering the findings of the present study, it is proposed that the universities integrate the social networks in the education programs and recognize it as the awareness factor, therefore benefit it in the educational affairs. © 2016 Alireza Ebrahimpour, Farnaz Rajabali, Fatemeh Yazdanfar, Reza Azarbad, Majid Rezaei Nodeh, Hasan Siamian, Mohammad Vahedi

    Fluorescent Silicon Clusters and Nanoparticles

    Full text link
    The fluorescence of silicon clusters is reviewed. Atomic clusters of silicon have been at the focus of research for several decades because of the relevance of size effects for material properties, the importance of silicon in electronics and the potential applications in bio-medicine. To date numerous examples of nanostructured forms of fluorescent silicon have been reported. This article introduces the principles and underlying concepts relevant for fluorescence of nanostructured silicon such as excitation, energy relaxation, radiative and non-radiative decay pathways and surface passivation. Experimental methods for the production of silicon clusters are presented. The geometric and electronic properties are reviewed and the implications for the ability to emit fluorescence are discussed. Free and pure silicon clusters produced in molecular beams appear to have properties that are unfavourable for light emission. However, when passivated or embedded in a suitable host, they may emit fluorescence. The current available data show that both quantum confinement and localised transitions, often at the surface, are responsible for fluorescence. By building silicon clusters atom by atom, and by embedding them in shells atom by atom, new insights into the microscopic origins of fluorescence from nanoscale silicon can be expected.Comment: 5 figures, chapter in "Silicon Nanomaterials Sourcebook", editor Klaus D. Sattler, CRC Press, August 201

    Diffusive and directional intracellular dynamics measured by field-based dynamic light scattering

    Get PDF
    Quantitative measurement of diffusive and directional processes of intracellular structures is not only critical in understanding cell mechanics and functions, but also has many applications, such as investigation of cellular responses to therapeutic agents. We introduce a label-free optical technique that allows non-perturbative characterization of localized intracellular dynamics. The method combines a field-based dynamic light scattering analysis with a confocal interferometric microscope to provide a statistical measure of the diffusive and directional motion of scattering structures inside a microscopic probe volume. To demonstrate the potential of this technique, we examined the localized intracellular dynamics in human epithelial ovarian cancer cells. We observed the distinctive temporal regimes of intracellular dynamics, which transitions from random to directional processes on a timescale of ∼0.01 sec. In addition, we observed disrupted directional processes on the timescale of 1∼5 sec by the application of a microtubule polymerization inhibitor, Colchicine, and ATP depletion. © 2010 Optical Society of America

    School Milieu and Education Revenue: The Educational Environment and Student Achievement

    No full text
    This paper appraises an appropriate educational environment at a perfect school. A standard environment equipped with suitable facilities has fundamental effects on better and deeper learning materials and mental conditions of the students and their parents and, eventually, on their mental calmness and social progress. In the present survey, the geographical locations of the schools, good grades and the necessary equipment were discussed as the classroom is a place that has a direct impact on the education process. Then the rest of the school components with indirect but essential influences upon training were considered. In this review, it was also tried to consider the roles of administrative and logistic departments in students' achievement
    corecore