32 research outputs found

    Quantum Simulator Based on the Paraxial Wave Equation

    Full text link
    We propose a paraxial quantum simulator that requires only widely available optical fibers or metamaterials. Such a simulator would facilitate cost-effective quantum simulation without specialized techniques. We show theoretically that the method accurately simulates quantum dynamics and quantum effects for an example system, which invites extension of the method to many-body systems using nonlinear optical elements and implementation of the paraxial quantum simulator to extend access to quantum computation and prototype quantum parity-time reversal (PT\mathcal{PT}) symmetric technologies

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Coherent Magnetic Response at Optical Frequencies Using Atomic Transitions

    No full text
    In optics, the interaction of atoms with the magnetic field of light is almost always ignored since its strength is many orders of magnitude weaker compared to the interaction with the electric field. In this article, by using a magnetic-dipole transition within the 4f shell of europium ions, we show a strong interaction between a green laser and an ensemble of atomic ions. The electrons move coherently between the ground and excited ionic levels (Rabi flopping) by interacting with the magnetic field of the laser. By measuring the Rabi flopping frequency as the laser intensity is varied, we report the first direct measurement of a magnetic-dipole matrix element in the optical region of the spectrum. Using density-matrix simulations of the ensemble, we infer the generation of coherent magnetization with magnitude 5.5×10^{-3}  A/m, which is capable of generating left-handed electromagnetic waves of intensity 1  nW/cm^{2}. These results open up the prospect of constructing left-handed materials using sharp transitions of atoms

    Analysis of activation-induced cytidine deaminase mRNA levels in patients with chronic lymphocytic leukemia with different cytogenetic status

    No full text
    Activation induced cytidine deaminase (AID) enzyme, which converts cytosine into uracil and is expressed only by activated B lymphocytes, plays a role in B cells in both the mechanisms of somatic hypermutation (SHM) and class switch recombination (CSR). There are studies showing that AID can cause numerous translocations in different lymphoproliferative diseases. Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of monoclonal B cells in bone marrow and peripheral blood. The predictability and clinical status of B-CLL are difficult to determine. About 30-50% of patients have chromosomal abnormalities. AID, which is thought to create fraction segments for translocations, might also cause deletions in DNA regions of 17p13, 11q22.3, 13q14 and 13q34 that are associated with prognostic implications in patients with CLL. In this study, the AID gene expression in patients with CLL with and without deletions was investigated. When compared to healthy subjects and patients without deletions, increased levels of AID expression in patients with deletions of 17p13, 11q22.3 or 13q14 were found, but not for the 13q34 region. Our results show that AID expression may be associated with deletions in patients with CLL

    Amidoximes: Promising candidates for CO 2 capture

    No full text
    Monoethanolamine (MEA) dominates power plant carbon dioxide (CO 2) scrubbing processes, though with major disadvantages such as a 8-35% energy penalty. Here we report that structurally comparable amidoximes are promising CO 2 capture agents based on RIMP2 electronic structure calculations. This was experimentally verified by the synthesis and testing of representative amidoximes for capture efficiencies at pressures as high as 180 bar. Acetamidoxime, which has the highest percent amidoxime functionality showed the highest CO 2 capacity (2.71 mmol g -1) when compared to terephthalamidoxime (two amidoximes per molecule) and tetraquinoamidoxime (four amidoximes per molecule). Polyamidoxime surpassed activated charcoal Norit RB3 for CO 2 capture per unit surface area. Adsorption isotherms exhibit Type IV behavior and acetamidoxime found to increase CO 2 capture with temperature, a less observed anomaly. Porous amidoximes are proposed as valuable alternatives to MEA.Scopu
    corecore