4 research outputs found

    Salt-induced thermochromism of a conjugated polyelectrolyte

    Get PDF
    We report here the photophysical properties of a water-soluble conjugated polythiophene with cationic side-chains. When dissolved in aqueous buffer solution (PBS, phosphate buffered saline), there is ordering of the polymer chains due to the presence of the salts, in contrast to pure water, where a random-coil conformation is adopted at room temperature. The ordering leads to a pronounced colour change of the solution (the absorption maximum shifts from 400 nm to 525 nm). Combining resonance Raman spectroscopy with density functional theory computations, we show a significant backbone planarization in the ordered phase. Moreover, the ratio of ordered phase to random-coil phase in PBS solution, as well as the extent of intermolecular interactions in the ordered phase, can be tuned by varying the temperature. Femtosecond transient absorption spectroscopy reveals that the excited- state behaviour of the polyelectrolyte is strongly affected by the degree of ordering. While triplet state formation is favoured in the random-coil chains, the ordered chains show a weak yield of polarons, related to interchain interactions. The investigated polyelectrolyte has been previously used as a biological DNA sensor, based on optical transduction when the conformation of the polyelectrolyte changes during assembly with the biomolecule. Therefore, our results, by correlating the photophysical properties of the polyelectrolyte to backbone and intermolecular conformation in a biologically relevant buffer, provide a significant step forward in understanding the mechanism of the biological sensing

    Artificial Muscles: Dielectric Elastomers Responsive to Low Voltages

    No full text
    The lack of soft high-dielectric-permittivity elastomers responsive to a low voltage has been a long-standing obstacle for the industrialization of dielectric elastomer actuators (DEA) technology. Here, elastomers that not only possess a high dielectric permittivity of 18 and good elastic and insulating properties but are also processable in very thin films by conventional techniques are reported. Additionally, the elastic modulus can be easily tuned. A soft elastomer with a storage modulus of E = 350 kPa, a tan delta = 0.007 at 0.05 Hz, and a lateral actuation strain of 13% at 13 V mu m(-1) is prepared. A stable lateral actuation over 50 000 cycles at 10 Hz is demonstrated. A stiffer elastomer with an E = 790 kPa, a tan delta = 0.0018 at 0.05 Hz, a large out-of-plane actuation at 41 V mu m(-1), and breakdown fields of almost 100 V mu m(-1) is also developed. Such breakdown fields are the highest ever reported for a high-permittivity elastomer. Additionally, actuators operable at a voltage as low as 200 V are also demonstrated. Because the materials used are cheap and easily available, and the chemical reactions leading to them allow upscaling, they have the potential to advance the DEA technology

    Nitrile-functionalized Poly(siloxane) as Electrolytes for High-Energy-Density Solid-State Li Batteries

    No full text
    In the quest to replace liquid Li-ion electrolytes with safer and non-toxic solid counterparts for Li-ion batteries, polysiloxane polymers have attracted considerable attention as they offer low glass transition temperatures, stability with metallic lithium, and versatility in chemical functionalization of the backbone. Herein, we present the synthesis of Li-ion conductive polysiloxane-based polymers functionalized with 60 % nitrile groups per chain unit. The synthesis procedure is based on the reaction of poly-(dimethylsiloxane-co-methylvinylsiloxane) polymer with 2-cyanoethanethiol, followed by the addition of lithium bis (trifluoromethanesulfonyl) imide. The presented polysiloxane-based polymers exhibit exceptionally high ionic conductivity up to 0.375 mS cm-1 at 60 degrees C and Li+ ion transfer number of 0.73, one of the highest reported for polymer Li-ion conducting electrolytes. Their electrochemical performance was evaluated in both symmetrical and full-cell configurations to test the utility of synthesized polymers as electrolytes in Li-ion batteries.ISSN:1864-564XISSN:1864-563
    corecore