530 research outputs found

    Explicit equations for leak rates through narrow cracks

    No full text
    Explicit equations to describe the leak rate of a single phase fluid through a narrow crack under a low pressure gradient have been developed and are presented. Four distinct flow regimes, which change with crack opening displacement, have been previously identified and are the basis of this model. The fluid flow is governed by the pressure gradient and the tortuosity of the crack, which is particularly important when the opening displacement is small. The equations have been developed by considering the pressure forces created when the fluid flows down an idealized zig-zag channel. The nature of the flow, and hence the governing equations, change as the crack aperture increases. The power of this approach is clearly seen when the flow rates predicted using this model are compared both to the flow rates obtained from computational fluid dynamics analysis and those found by experimentation. The agreement between these sets of data is good, showing that the major effects governing the flow rate have been identified and then accounted for

    T-stress determination using thermoelastic stress analysis

    No full text
    T-stress and mixed-mode stress intensity factors have been determined experimentally using thermoelastic stress analysis and using a finite element method. Pure mode I, strong mixed-mode I and II, and interacting cracks have been used as the case studies. A new technique has been proposed to identify the crack tip from thermoelastic images. It has also been shown that using three terms of Williams's stress field formulation to determine the T-stress, yields a more accurate solution than using only the first two terms of the expansion

    Strain Evolution Measurement at the Microscale of a Dual Phase Steel Using Digital Image Correlation

    Get PDF
    Digital Image Correlation (DIC) together with in-situ tensile testing has been used to measure in DP1000 steel the evolution of plastic strains at the microstructure scale. Interrupted tensile tests were performed on specially designed samples and scanning-electron micrographs were taken at regular applied strain intervals. Patterns defined by the microstructural features of the material have been used for the correlation carried out using LAVision software. The full field strain maps produced by DIC show a progressive localisation of deformation into bands at about 45o with respect to the loading direction. Plastic strains as high as 130% have been measured within the ferrite phase

    Do additive manufactured parts deserve better?

    Get PDF
    Additive manufacturing of metallic components is regarded as one of the more exciting developments in engineering. The combined attractions of near net shape, tailored composition, and geometry optimisation have led to much interest in the various processes used and a drive to improve the mechanical properties to match those of wrought parts. In this paper, we reflect on the apparent lack of ambition in optimising the structural integrity of parts made using these new manufacturing processes. The current research focus seems to be either on largely irrelevant static properties, or on quantifying the fatigue response in a way that would be familiar to engineers in the 19th Century. Given the work on the role of microstructure and fatigue, which dates back to Ewing and Humphrey in 1903 reaching its zenith in the 1980s and 90s with Keith Miller in the vanguard, and recent developments in both imaging technologies and sophisticated numerical modelling, all the elements are in place for a much more rigorous, and ultimately more fruitful, approach to understand the structural integrity of additive manufactured components

    Near tip strain evolution under cyclic loading

    Get PDF
    The concept of ratchetting strain as a crack driving force in controlling crack growth has previouslybeen explored at Portsmouth using numerical approaches for nickel-based superalloys. In this paper, we reportthe first experimental observations of the near-tip strain evolution as captured by the Digital Image Correlation(DIC) technique on a compact tension specimen of stainless steel 316L. The evolution of the near-tip strainswith loading cycles was studied whilst the crack tip was maintained stationary. The strains were monitored overthe selected distances from the crack tip for a given number of cycles under an incremental loading regime. Theresults show that strain ratchetting does occur with load cycling, and is particularly evident close to the crack tipand under higher loads. A finite element model has been developed to simulate the experiments and thesimulation results are compared with the DIC measurements

    Living Plants in Hawaii Attacked by Coptotermes formosanus

    Get PDF
    Forty-seven species of living plants in 27 families were found infested by Coptotermes formosanus Shiraki in Hawaii. The symptoms caused by the infestations were dependent on the mode of attack. Although an actual value was not placed on the economic losses caused by the attacks, evidence indicates that the losses are substantial

    Crack paths under mixed mode loading

    Get PDF
    Long fatigue cracks that initially experience mixed mode displacements usually change direction in response to cyclic elastic stresses. Eventually the cracks tend to orient themselves into a pure mode I condition, but the path that they take can be complex and chaotic. In this paper, we report on recent developments in techniques for tracking the crack path as it grows and evaluating the strength of the mixed mode crack tip stress field

    Transverse shear modulus of SILICOMB cellular structures

    Get PDF
    This work describes the transverse shear stiffness properties of a novel honeycomb with zero Poisson’s ratio. The cellular configuration is simulated using a series of finite element models representing full-scale and representative unit cells of the honeycomb topology. The models are benchmarked against experimental results from pure shear and 3-point bending ASTM tests. The benchmarked models are used to perform a parametric study of the shear moduli (G13 and G23) against the geometry of the unit cell and the gauge thickness of the honeycomb panels. The shear stiffness maps obtained allow comparison of the SILICOMB configuration against classical centresymmetric and rectangular honeycomb topologies

    Determination of micro-scale plastic strain caused by orthogonal cutting

    Get PDF
    An electron beam lithography technique has been used to produce microgrids in order to measure local plastic strains, induced during an orthogonal cutting process, at the microscopic scale in the shear zone and under the machined surface. Microgrids with a 10 ÎŒm pitch and a line width less than 1 ÎŒm have been printed on the polished surface of an aluminium alloy AA 5182 to test the applicability of the technique in metal cutting operations. Orthogonal cutting tests were carried out at 40 mm/s. Results show that the distortion of the grids could successfully be used to compute plastic strains due to orthogonal cutting with higher accuracy compared to other techniques reported in the literature. Strain maps of the machined specimens have been produced and show high-strain gradients very close to the machined surface with local values reaching 2.2. High-resolution strain measurements carried out in the primary deformation zone also provide new insight into the material deformation during the chip formation process

    Dataset supporting the proteomic differences found between excretion/secretion products from two isolates of Fasciola hepatica newly excysted juveniles (NEJ) derived from different snail hosts

    Get PDF
    Here we present the proteomic profile datasets of two Fasciola hepatica NEJ isolates derived from different snail hosts: Lymnaea viatrix and Pseudosuccinea columella. The data used in the analysis are related to the article ‘A proteomic comparison of excretion/secretion products in Fasciola hepatica newly excysted juveniles (NEJ) derived from Lymnaea viatrix or Pseudosuccinea columella’ (Di Maggio et al., 2019
    • 

    corecore