1,213 research outputs found
The effect of CO2-enriched brine injection on the mechanical properties of calcite bearing sandstone
The mechanical and fluid-flow response of subsurface geological reservoirs due to injection of CO2 is of critical importance for the safe management and storage of anthropogenic carbon emissions. Although the time-lapse seismic method has proven to be an effective tool to remotely monitor changes in underground fluid saturations, variations in reservoir properties caused by geochemical interactions can also influence the seismic response. This can lead to ambiguity and uncertainty in monitoring the movement of injected CO2 and hence determination of reservoir seal integrity. Geochemical interactions can also modify the mechanical strength of the reservoir and therefore threaten its integrity. We conducted experiments to assess how the velocity and rock strength of a calcite-bearing sandstone are affected by flooding with CO2 saturated brine. The results indicate that both seismic velocity and rock strength are significantly reduced due to minor calcite dissolution. The implications at the reservoir scale for CO2 storage are twofold. Firstly, modifications in velocity can complicate seismic monitoring operations and lead to interpretation errors. This can be accounted for if shear wave velocity variations are used to detect fluid-rock interactions. Secondly, reduction in rock strength, caused by calcite dissolution, can threaten reservoir and wellbore integrity under stress conditions typically found in potential carbon repositories
The role of sulfate-rich fluids in heavy rare earth enrichment at the Dashigou carbonatite deposit, Huanglongpu, China
The Huanglongpu carbonatites are located in the north-western part of the Qinling orogenic belt in central China. Calcite carbonatite dykes at the Dashigou open pit are unusual due to their enrichment in heavy rare earth elements (HREE) relative to light rare earth elements (LREE), leading to a flat REE pattern, and in that the majority of dykes have a quartz core. They also host economic concentrations of molybdenite. The calcite carbonatite dykes show two styles of mineralogy according to the degree of hydrothermal reworking, and these are reflected in REE distribution and concentration. The REE in the little-altered calcite carbonatite occur mostly in magmatic REE minerals, mainly monazite-(Ce), and typically have ΣLREE/(HREE+Y) ratios from 9.9 to 17. In hydrothermally altered calcite carbonatites, magmatic monazite-(Ce) is partially replaced to fully replaced by HREE-enriched secondary phases and the rocks have ΣLREE/(HREE+Y) ratios from 1.1 to 3.8. The fluid responsible for hydrothermal REE redistribution is preserved in fluid inclusions in the quartz lenses. The bulk of the quartz lacks fluid inclusions but is cut by two later hydrothermal quartz generations, both containing sulfate-rich fluid inclusions with sulfate typically present as multiple trapped solids, as well as in solution. The estimated total sulfate content of fluid inclusions ranges from 6 to >33 wt.% K2SO4 equivalent. We interpret these heterogeneous fluid inclusions to be the result of reaction of sulfate-rich fluids with the calcite carbonatite dykes. The final HREE enrichment is due to a combination of factors: (1) the progressive HREE enrichment of later magmatic calcite created a HREE-enriched source; (2) REE–SO42– complexing allowed the REE to be redistributed without fractionation; and (3) secondary REE mineralisation was dominated by minerals such as HREE-enriched fluorocarbonates, xenotime-(Y) and churchite-(Y) whose crystal structures tends to favour HREE
Psychometric properties of the Vertigo symptom scale – Short form
<p>Abstract</p> <p>Background</p> <p>The aim of the study was to examine the psychometric properties of the Vertigo symptom scale – short form (VSS-SF), a condition-specific measure of dizziness, following translation of the scale into Norwegian.</p> <p>Methods</p> <p>A cross-sectional survey design was used to examine the factor structure, internal consistency and discriminative ability (sample I, n = 503). A cross-sectional pre-intervention design was used to examine the construct validity (sample II, n = 36) of the measure and a test-retest design was used to examine reliability (sub-sample of sample II, n = 28).</p> <p>Results</p> <p>The scree plot indicated a two factor structure accounting respectively for 41% and 12% of the variance prior to rotation. The factors were related to vertigo-balance (VSS-V) and autonomic-anxiety (VSS-A). Twelve of the items loaded clearly on either of the two dimensions, while three items cross-loaded. Internal consistency of the VSS-SF was high (alpha = 0.90). Construct validity was indicated by correlation between path length registered by platform posturography and the VSS-V (r = 0.52), but not with the VSS-A. The ability to discriminate between dizzy and not dizzy patients was excellent for the VSS-SF and sub-dimension VSS-V (area under the curve 0.87 and 0.91, respectively), and acceptable for the sub-dimension VSS-A (area under the curve 0.77). High test-retest reliability was demonstrated (ICC VSS-SF: 0.88, VSS-V: 0.90, VSS-A: 0.90) and no systematic change was observed in the scores from test to retest after 2 days.</p> <p>Conclusion</p> <p>Using a Norwegian translated version of the VSS-SF, this is the first study to provide evidence of the construct validity of this instrument demonstrating a stable two factor structure of the scale, and the identified sub-dimensions of dizziness were related to vertigo-balance and autonomic-anxiety, respectively. Evidence regarding a physical construct underlying the vertigo-balance sub-scale was provided. Satisfactory internal consistency was indicated, and the discriminative ability of the instruments was demonstrated. The instrument showed satisfactory test-retest reliability.</p
Modeling metamorphic fluid flow with reaction-compaction permeability feedbacks
Existing models of metasomatic flow do not allow for the effect that reaction has on the flow patterns. Instead, it is assumed that the volatiles produced are negligible in volume compared to those infiltrated and that reaction does not modify permeability. This is clearly unlikely to be true for infiltration-driven decarbonation reactions.
The rates of porosity creation by reaction and porosity loss by creep have been calculated for a representative volume of calcite –quartz-wollastonite marble, and it is found that, even for a weak calcite matrix, the rate of porosity generation by reaction is likely to outstrip the collapse of porosity, as long as the system is out of equilibrium.
We have applied a self-consistent 1D finite-difference model to the reaction of calcite + quartz to wollastonite in a 10m thick marble, in response to influx of H2O rich fluid, with fixed boundary conditions. The model allows us to evaluate the effect of reaction on the porosity structure and fluid pressure variation across the layer, from which local Darcy fluxes can be evaluated. The progress of reaction that we model is constrained by hydrological considerations, with the requisite parameters recalculated as reaction progresses, assuming creep compaction of rock under the stress difference between lithostatic and fluid pressures.
We fnd that the volume of fluid realised by decarbonation, driven by influx of H20, is sufficient to create a back-flow, so that further advancement of the reaction front is only possible as a result of diffusion of water against the Darcy flux. The effect of creep driven by differences between fluid pressure and lithostatic pressure is to reduce the permeability of the layer and especially reduce the secondary porosity developed in the zone at and behind the advancing reaction front. We predict that in a 3D situation, the porous zone of reacted marble becomes a conduit for layer-parallel flow, and the secondary porosity is infilled by calc-silicate minerals due to silica metasomatism
Light rare earth element redistribution during hydrothermal alteration at the Okorusu carbonatite complex, Namibia
The Cretaceous Okorusu carbonatite, Namibia, includes diopside-bearing and pegmatitic calcite carbonatites, both exhibiting hydrothermally altered mineral assemblages. In unaltered carbonatite, Sr, Ba and rare earth elements (REE) are hosted principally by calcite and fluorapatite. However, in hydrothermally altered carbonatites, small (<50 µm) parisite-(Ce) grains are the dominant REE host, while Ba and Sr are hosted in baryte, celestine, strontianite and witherite. Hydrothermal calcite has a much lower trace-element content than the original, magmatic calcite. Regardless of the low REE contents of the hydrothermal calcite, the REE patterns are similar to those of parisite-(Ce), magmatic minerals and mafic rocks associated with the carbonatites. These similarities suggest that hydrothermal alteration remobilised REE from magmatic minerals, predominantly calcite, without significant fractionation or addition from an external source. Barium and Sr released during alteration were mainly reprecipitated as sulfates. The breakdown of magmatic pyrite into iron hydroxide is inferred to be the main source of sulfate. The behaviour of sulfur suggests that the hydrothermal fluid was somewhat oxidising and it may have been part of a geothermal circulation system. Late hydrothermal massive fluorite replaced the calcite carbonatites at Okorusu and resulted in extensive chemical change, suggesting continued magmatic contributions to the fluid system
Mechanisms for the generation of HREE mineralization in carbonatites: Evidence from Huanglongpu, China.
The Hunaglongpu carbonatites, Qinling Mountains, China, are exceptional as they form both an economic Mo resource, and are enriched in the HREE compared to typical carbonatites, giving a metal profile that may closely match projected future demand. The carbonatites at the level currently exposed appear to be transitional between magmatic and hydrothermal processes. The multistage dykes and veins are cored by quartz which hosts a fluid inclusion assemblage with a high proportion of sulphate daughter or trapped minerals, and later stage, cross-cutting veins are rich in barite-celestine. The REE mineral paragenesis evolves from monazite, through apatite and bastnäsite to Ca-REE fluorcabonates, with an increase in HREE enrichment at every stage. Radio-isotope ratios are typical of enriched mantle sources and sulphur stable isotopes are consistent with magmatic S sources. However, Mg stable isotopes are consistent with a component of recycled subducted marine carbonate in the source region, The HREE enrichment is a function of both unusual mantle source for the primary magmas and REE mobility and concentration during post-magmatic modification in a sulphate-rich hydrothermal system. Aqueous sulphate is a none specific ligand for the REE, and this coupled with crystal fraction lead to HREE enrichment during subsolidus alteration.The attached document is the authors’ submitted version of these conference proceedings. You are advised to consult the publisher’s version if you wish to cite from it
- …