83 research outputs found

    Meta-analysis of MMP-9 levels in the serum of patients with epilepsy

    Get PDF
    BackgroundEpilepsy’s pathogenesis and progression are significantly influenced by neuroinflammation, blood–brain barrier function, and synaptic remodeling function. Matrix metalloproteinase 9 (MMP-9), as a critical factor, may contribute to the development of epilepsy through one or more of the above-mentioned pathways. This study aims to evaluate and quantify the correlation between MMP-9 levels and epilepsy.MethodsWe conducted a comprehensive search of Embase, Web of Science, PubMed, Cochrane Library, WanFang DATA, VIP, and the CNKI to identify studies that investigate the potential association between MMP-9 and epilepsy. The data were independently extracted by two researchers and assessed for quality using the Cochrane Collaboration tool. The extracted data were analyzed using Stata 15 and Review Manager 5.4. The study protocol was registered prospectively at PROSPERO, ID: CRD42023468493.ResultsThirteen studies with a total of 756 patients and 611 matched controls met the inclusion criteria. Eight of these studies reported total serum MMP-9 levels, and the other five studies were used for a further subgroup analysis. The meta-analysis indicated that the serum MMP-9 level was higher in epilepsy patients (SMD = 4.18, 95% confidence interval = 2.18–6.17, p < 0.00001) compared with that in the control group. Publication bias was not detected according to Begg’s test. The subgroup analysis of country indicated that the epilepsy patients in China, Poland, and Egypt had higher levels of serum MMP-9 than the control group, with the increase being more pronounced in Egypt. The subgroup analysis of the age category demonstrated that the serum MMP-9 levels of the adult patients with epilepsy were significantly higher than those of the matched controls. However, the serum MMP-9 levels did not significantly differ in children with epilepsy. The subgroup analysis of the seizure types demonstrated substantial difference in the MMP-9 levels between patients of seizure-free epilepsy (patients who have been seizure-free for at least 7 days) and the control group. Meanwhile, the serum MMP-9 level in patients with epileptic seizures was significantly higher than that in the control group. The subgroup analysis based on seizure duration in patients showed that the serum MMP-9 levels at 1–3, 24, and 72 h after seizure did not exhibit significant differences between female and male patients with epilepsy when compared with the control group. The serum MMP-9 levels at 1–3 and 24 h were significantly higher than those of the matched controls. Nevertheless, the serum MMP-9 level at 72 h was not significantly different from that in the control group.ConclusionThis meta-analysis presents the first comprehensive summary of the connection between serum MMP-9 level and epilepsy. The MMP-9 levels in epilepsy patients are elevated. Large-scale studies with a high level of evidence are necessary to determine the exact relationship between MMP-9 and epilepsy

    Unconventional polarization switching mechanism in (Hf, Zr)O2 ferroelectrics

    Full text link
    HfO2_{2}-based ferroelectric thin films are promising for their application in ferroelectric devices. Predicting the ultimate magnitude of polarization and understanding its switching mechanism are critical to realize the optimal performance of these devices. Here, a generalized solid-state variable cell nudged elastic band (VCNEB) method is employed to predict the switching pathway associated with domain-wall motion in (Hf, Zr)O2_{2} ferroelectrics. It is found that the polarization reversal pathway, where three-fold coordinated O atoms pass across the nominal unit-cell boundaries defined by the Hf/Zr atomic planes, is energetically more favorable than the conventional pathway where the O atoms do not pass through these planes. This finding implies that the polarization orientation in the orthorhombic Pca21_{1} phase of HfO2_{2} nd its derivatives is opposite to that normally assumed, predicts the spontaneous polarization magnitude of about 70 μ{\mu}C/cm2^{2} that is nearly 50% larger than the commonly accepted value, signifies a positive intrinsic longitudinal piezoelectric coefficient, and suggests growth of ferroelectric domains, in response to an applied electric field, structurally reversed to those usually anticipated. These results provide important insights into the understanding of ferroelectricity in HfO2_{2}-based ferroelectrics.Comment: 34 pages, 28 figure

    Design, synthesis and biological evaluation of pyridine-chalcone derivatives as novel microtubule-destabilizing agents

    Get PDF
    Further optimization of the trimethoxyphenyl scaffold of parent chalcone compound (2a) by introducing a pyridine ring afforded a series of novel pyridine-chalcone derivatives as potential anti-tubulin agents. All the target compounds were evaluated for their antiproliferative activities. Among them, representative compound 16f exhibited the most potent activity with the IC50 values ranging from 0.023 to 0.045 μM against a panel of cancer cell lines. Further mechanism study results demonstrated that compound 16f effectively inhibited the microtubule polymerization by binding to the colchicine site of tubulin. Moreover, cellular mechanism studies disclosed that 16f caused G2/M phase arrest, induced cell apoptosis and disrupted the intracellular microtubule network. Also, 16f reduced the cell migration and disrupted the capillary-like tube formation of human umbilical vein endothelial cells (HUVECs). Importantly, 16f significantly inhibited tumor growth in H22 xenograft models without apparent toxicity, which was stronger than the reference compound CA-4, indicating that it is worthy to investigate 16f as a potent microtubule-destabilizing agent for cancer therapy

    Antitumor activity of celastrol nanoparticles in a xenograft retinoblastoma tumor model

    Get PDF
    Zhanrong Li,1,* Xianghua Wu,1,* Jingguo Li,2 Lin Yao,1 Limei Sun,1 Yingying Shi,1 Wenxin Zhang,1 Jianxian Lin,1 Dan Liang,1 Yongping Li1 1State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, 2School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China*These authors contributed equally to this workBackground: Celastrol, a Chinese herbal medicine, has shown antitumor activity against various tumor cell lines. However, the effect of celastrol on retinoblastoma has not yet been analyzed. Additionally, the poor water solubility of celastrol restricts further therapeutic applications. The goal of this study was to evaluate the effect of celastrol nanoparticles (CNPs) on retinoblastoma and to investigate the potential mechanisms involved.Methods: Celastrol-loaded poly(ethylene glycol)-block-poly(ε-caprolactone) nanopolymeric micelles were developed to improve the hydrophilicity of celastrol. The 2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulf-ophenyl)-2H tetrazolium monosodium salt (WST-8) assay was used to determine the inhibitory effect of CNPs on SO-Rb 50 cell proliferation in vitro. Immunofluorescence was used to evaluate the apoptotic effect of CNPs on nuclear morphology, and flow cytometry was used to quantify cellular apoptosis. The expression of Bcl-2, Bax, NF-κB p65, and phospo-NF-κB p65 proteins was assessed by Western blotting. A human retinoblastoma xenograft model was used to evaluate the inhibitory effects of CNPs on retinoblastoma in NOD-SCID mice. Hematoxylin and eosin staining was used to assess the apoptotic effects of CNPs on retinoblastoma.Results: CNPs inhibit the proliferation of SO-Rb 50 cells in a dose- and time-dependent manner with an IC50 of 17.733 µg/mL (celastrol-loading content: 7.36%) after exposure to CNPs for 48 hours. CNPs induce apoptosis in SO-Rb 50 cells in a dose-dependent manner. The expression of Bcl-2, NF-κB p65, and phospo-NF-κB p65 proteins decreased after exposure to CNPs 54.4 µg/mL for 48 hours. Additionally, the Bax/Bcl-2 ratio increased, whereas the expression of Bax itself was not significantly altered. CNPs inhibit the growth of retinoblastoma and induce apoptosis in retinoblastoma cells in mice.Conclusion: CNPs inhibit the growth of retinoblastoma in mouse xenograft model by inducing apoptosis in SO-Rb 50 cells, which may be related to the increased Bax/Bcl-2 ratio and the inhibition of NF-κB. CNPs may represent a potential alternative treatment for retinoblastoma.Keywords: apoptosis, SO-Rb 50 cells, poly(ethylene glycol)-block-poly(ε-caprolactone), nanopolymeric micelles, celastrol nanoparticles&nbsp

    Multi-Loop Integral Control-Based Heart Rate Regulation for Fast Tracking and Faulty-Tolerant Control Performance in Treadmill Exercises

    Get PDF
    In order to offer a reliable, fast, and offset-free tracking performance for the regulation of heart rate (HR) during treadmill exercise, a two-input single-output (2ISO) control system by simultaneously manipulating both treadmill speed and gradient is proposed. The decentralized integral controllability (DIC) analysis is extended to nonlinear and non-square processes especially for a 2ISO process, namely multi-loop integral controllability (MIC). The proposed multi-loop integral control-based HR regulation by manipulating treadmill speed and gradient is then validated through a comparative treadmill experiment that compares the system performance of the proposed 2ISO MIC control loop with that of single-input single-output (SISO) loops, speed/gradient-to-HR. The experimental validation presents that by simultaneously using two control inputs, the automated system can achieve the fastest HR tracking performance and stay close to the reference HR during steady state, while comparing with two SISO structures, and offer the fault-tolerant ability if the gains of the two multi-loop integral controllers are well tuned. It has a vital implication for the applications of exercise rehabilitation and fitness in relation to the automated control system

    Design, synthesis and molecular modeling of isothiochromanone derivatives as acetylcholinesterase inhibitors

    Get PDF
    A series of novel isothio- and isoselenochromanone derivatives bearing N-benzyl pyridinium moiety were designed, synthesized and evaluated as acetylcholinesterase (AChE) inhibitors. Results: Most of the target compounds exhibited potent anti-AChE activities with IC50 values in nanomolar ranges. Among them, compound 15a exhibited the most potent anti-AChE activity (IC50 = 2.7 nM), moderate antioxidant activity and low neurotoxicity. Moreover, the kinetic and docking studies revealed that compound 15a was a mixed-type inhibitor, which bounds to peripheral anionic site and catalytic active site of AChE. Conclusion: Those results suggested that compound 15a might be a potential candidate for AD treatment

    Design, synthesis and anticancer properties of isocombretapyridines as potent colchicine binding site inhibitors

    Get PDF
    A series of novel isocombretapyridines were designed and synthesized based on a lead compound isocombretastatin A-4 (isoCA-4) by replacing 3,4,5-trimethoxylphenyl with substituent pyridine nucleus. The MTT assay results showed that compound 20a possessed the most potent activities against all tested cell lines with IC50 values at nanomolar concentration ranges. Moreover, 20a inhibited tubulin polymerization at a micromolar level and also displayed potent anti-vascular activity in vitro. Further mechanistic studies were conducted to demonstrate that compound 20a could bind to the colchicine site of tubulin,and disrupte the cell microtubule networks, induce G2/M phase arrest, promote apoptosis and depolarize mitochondria of K562 cells in a dose-dependent manner. Notably, 20a exhibited more potent tumor growth inhibition activity with 68.7% tumor growth inhibition than that of isoCA-4 in H22 allograft mouse model without apparent toxicity. The present results suggested that compound 20a may serve as a promising potent microtubule-destabilizing agent candidate for the development of therapeutics to treat cancer

    A review of phase change heat transfer in shape-stabilized phase change materials (ss-PCMs) based on porous supports for thermal energy storage

    Get PDF
    Latent heat thermal energy storage (LHTES) uses phase change materials (PCMs) to store and release heat, and can effectively address the mismatch between energy supply and demand. However, it suffers from low thermal conductivity and the leakage problem. One of the solutions is integrating porous supports and PCMs to fabricate shape-stabilized phase change materials (ss-PCMs). The phase change heat transfer in porous ss-PCMs is of fundamental importance for determining thermal-fluidic behaviours and evaluating LHTES system performance. This paper reviews the recent experimental and numerical investigations on phase change heat transfer in porous ss-PCMs. Materials, methods, apparatuses and significant outcomes are included in the section of experimental studies and it is found that paraffin and metal foam are the most used PCM and porous support respectively in the current researches. Numerical advances are reviewed from the aspect of different simulation methods. Compared to representative elementary volume (REV)-scale simulation, the pore-scale simulation can provide extra flow and heat transfer characteristics in pores, exhibiting great potential for the simulation of mesoporous, microporous and hierarchical porous materials. Moreover, there exists a research gap between phase change heat transfer and material preparation. Finally, this review outlooks the future research topics of phase change heat transfer in porous ss-PCMs
    corecore