Check for updates

OPEN ACCESS

EDITED BY Shu Wang, Capital Medical University, China

REVIEWED BY Harry Pantazopoulos, University of Mississippi Medical Center, United States Xirui Hou, Johns Hopkins University, United States

*CORRESPONDENCE Limei Diao ⊠ dlm721226@163.com

†These authors have contributed equally to this work

RECEIVED 19 September 2023 ACCEPTED 06 February 2024 PUBLISHED 21 February 2024

CITATION

Wang Q, Lin Z, Yao C, Liu J, Chen J and Diao L (2024) Meta-analysis of MMP-9 levels in the serum of patients with epilepsy. *Front. Neurosci.* 18:1296876. doi: 10.3389/fnins.2024.1296876

COPYRIGHT

© 2024 Wang, Lin, Yao, Liu, Chen and Diao. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Meta-analysis of MMP-9 levels in the serum of patients with epilepsy

Qin Wang^{1,2†}, Zehua Lin³, Chunyuan Yao^{1,2}, Jinwen Liu^{1,2}, Jiangwei Chen^{1,2} and Limei Diao^{1,2*†}

¹Graduate School of First Clinical Medicine College, Guangxi University of Chinese Medicine, Nanning, Guangxi, China, ²Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Guangxi, Nanning, China, ³Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China

Background: Epilepsy's pathogenesis and progression are significantly influenced by neuroinflammation, blood-brain barrier function, and synaptic remodeling function. Matrix metalloproteinase 9 (MMP-9), as a critical factor, may contribute to the development of epilepsy through one or more of the above-mentioned pathways. This study aims to evaluate and quantify the correlation between MMP-9 levels and epilepsy.

Methods: We conducted a comprehensive search of Embase, Web of Science, PubMed, Cochrane Library, WanFang DATA, VIP, and the CNKI to identify studies that investigate the potential association between MMP-9 and epilepsy. The data were independently extracted by two researchers and assessed for quality using the Cochrane Collaboration tool. The extracted data were analyzed using Stata 15 and Review Manager 5.4. The study protocol was registered prospectively at PROSPERO, ID: CRD42023468493.

Results: Thirteen studies with a total of 756 patients and 611 matched controls met the inclusion criteria. Eight of these studies reported total serum MMP-9 levels, and the other five studies were used for a further subgroup analysis. The metaanalysis indicated that the serum MMP-9 level was higher in epilepsy patients (SMD = 4.18, 95% confidence interval = 2.18 - 6.17, p < 0.00001) compared with that in the control group. Publication bias was not detected according to Begg's test. The subgroup analysis of country indicated that the epilepsy patients in China, Poland, and Egypt had higher levels of serum MMP-9 than the control group, with the increase being more pronounced in Egypt. The subgroup analysis of the age category demonstrated that the serum MMP-9 levels of the adult patients with epilepsy were significantly higher than those of the matched controls. However, the serum MMP-9 levels did not significantly differ in children with epilepsy. The subgroup analysis of the seizure types demonstrated substantial difference in the MMP-9 levels between patients of seizure-free epilepsy (patients who have been seizure-free for at least 7 days) and the control group. Meanwhile, the serum MMP-9 level in patients with epileptic seizures was significantly higher than that in the control group. The subgroup analysis based on seizure duration in patients showed that the serum MMP-9 levels at 1-3, 24, and 72 h after seizure did not exhibit significant differences between female and male patients with epilepsy when compared with the control group. The serum MMP-9 levels at 1-3 and 24 h were significantly higher than those of the matched controls. Nevertheless, the serum MMP-9 level at 72 h was not significantly different from that in the control group.

Conclusion: This meta-analysis presents the first comprehensive summary of the connection between serum MMP-9 level and epilepsy. The MMP-9 levels in epilepsy patients are elevated. Large-scale studies with a high level of evidence are necessary to determine the exact relationship between MMP-9 and epilepsy.

KEYWORDS

MMP-9, epilepsy, meta-analysis, brain, seizure

Highlights

- This work is the first meta-analysis to investigate the association between serum MMP-9 level and epilepsy.
- The serum level of MMP-9 is elevated in patients with epilepsy, particularly in adults.
- The serum level of MMP-9 may be related to seizure duration, independent of sex.
- The serum level of MMP-9 could potentially serve as a biomarker for epilepsy.

1 Introduction

Epilepsy is a chronic recurrent transient brain dysfunction syndrome characterized by abnormal discharges of neurons in the brain (Diao et al., 2015). This condition is listed as one of the five major neurological disorders that WHO focuses on preventing and treating. At present, approximately 70 million people have epilepsy worldwide (GBD 2015 Neurological Disorders Collaborator Group, 2017), the incidence of epilepsy in developing countries is as high as 120,000/year (Hirose, 2013), and nearly 9 million epilepsy patients live in China (Zhen, 2014).

Neuroinflammation, blood-brain barrier (BBB) dysfunction, and altered synaptic remodeling function are potential contributors to seizures. Endogenous and exogenous pathogens can enter the brain through the damaged BBB, resulting in a local inflammatory response that causes leukocytes to flow across the BBB into the brain, stimulating neurons in the brain, causing abnormal excitation of neuronal synapses and altered synaptic remodeling function, leading to seizures (Swann and Hablitz, 2000; Fabene et al., 2008, 2013). Accordingly, BBB dysfunction interacts with neuroinflammation in a vicious cycle that can further increase the BBB permeability (Vezzani et al., 2008; Frigerio et al., 2012).

Matrix metalloproteinases (MMPs) are a class of zinc atomdependent endopeptidases that exist as zymogens, and extracellularly activated MMPs can selectively degrade a variety of extracellular matrix components. MMP 9 (MMP-9) is one of the more important MMPs, and its important functions in the central nervous system are related to its involvement in neuroinflammation, BBB function, and synaptic plasticity (Yin et al., 2011; Bronisz and Kurkowska-Jastrzębska, 2016). Under physiological conditions, MMP-9 is mainly produced by neurons, and glial cells also produce small amounts of MMP-9 (Michaluk and Kaczmarek, 2007; Yin et al., 2011), which is involved in neuronal plasticity (Michaluk and Kaczmarek, 2007; Dong et al., 2009). However, during seizures, increased cytokine production by circulating immune and neuroglial cells stimulates the activation of metalloproteinases. Consequently, upregulated MMP-9 degrades many extracellular matrix molecules to disrupt the BBB. The increased MMP-9 can also rearrange the molecular structure of peripheral cells and cellular matrix, resulting in synaptic remodeling, which can lead to epilepsy (Bronisz et al., 2022).

Animal experiments suggest that elevated MMP-9 may be closely associated with epileptogenesis, leading to neuronal death, abnormal synaptic plasticity, and neuroinflammation. For instance, glutamate released during epileptic seizures in rats leads to elevated levels of MMP-9 protein expression and activity, resulting in BBB leakage (Rempe et al., 2018). However, direct experimental evidence linking serum MMP-9 to neurological disorders such as epilepsy is still lacking. Several clinical studies have observed a potential association between changes in serum MMP-9 levels and epilepsy. The specific epileptogenic mechanisms of serum MMP-9 are not yet well understood, including its relationship with cytokines and inflammatory response mediators and its interaction mechanisms (Yin et al., 2011). This meta-analysis aims to provide useful evidence for the continuous and in-depth study of serum MMP-9 in epilepsy in the future.

2 Materials and methods

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines.

2.1 Search strategy and selection criteria

Two researchers searched Embase, Web of Science, PubMed, Cochrane Library, WanFang DATA, VIP, and CNKI for relevant articles published up to 20 August 2023. PubMed was searched for MeSH terms as follows: ("epilepsy" OR "epilepsies" OR "seizure disorder" OR "seizure disorders") AND ("MMPs" OR "MMP-9" OR "Matrix Metalloproteinase 9") OR "Serum Proteins Associated with Blood–Brain Barrier."

The inclusion criteria consisted of conducting case–control or cohort studies and reporting the serum levels of MMP-9 in control individuals and epilepsy patients. The exclusion criteria included the use of overlapping population or databases, animal studies, case reports, systematic case reports, systematic reviews, comments, letters, and reviews.

2.2 Data extraction

Both researchers independently searched for relevant literature by browsing through the titles and abstracts. They then screened the literature to discover any apparent inconsistencies before subsequently reading the full texts. Finally, they re-screened the literature to make final decisions regarding inclusion. If any disagreement arose during the checking and screening of literature, then it could be resolved either through discussion within the research group or by involving a third-party researcher.

The study's name of primary article, year and country of publication and details on the assay method, specimen type, total number of cases and controls, ages, sex, and MMP-9 concentration were recorded or calculated. The included studies were evaluated by two independent researchers by using the Newcastle–Ottawa Scale (NOS). Studies with a score equal or greater than six were recognized as high-quality.

2.3 Statistical analysis

The statistical analyses were conducted using the RevMan 5.4 and Stata 15 software provided by the official website of the Cochrane Collaboration, following the principles of evidence-based medicine. We used the risk ratio and 95% confidence interval (CI) to examine the continuous or dichotomous variables. Furthermore, we tested for statistical heterogeneity using the I^2 statistic. If no heterogeneity exists between the results of the studies (p > 0.1, $I^2 \leq 50\%$), then we used a fixed-effects model in the meta-analysis with the corresponding outcome indicators (Chen et al., 2023). Meanwhile, if heterogeneity existed between the results of the studies, then we used a randomeffects model in the meta-analysis. We performed subgroup or regression analyses on factors, such as country, age category, seizure types, and duration of seizures, which could have contributed to the generation of heterogeneity. The leave-one-out method was applied for sensitivity analysis. A funnel plot was used to evaluate publication bias and Begg's test to determine statistical significance.

When we could not find the cause of the heterogeneity, or the heterogeneity was clearly significantly large, we conducted descriptive analyses.

3 Results

3.1 Study selection

We identified 331 references from the initial database search and excluded 181 duplicates. After further review, 136 articles that do not meet inclusion criteria were removed. The titles, abstracts, and full texts were carefully reviewed. The research (n=7), review articles (n=5), other outcome (n=3), case reports (n=2), RCT research (n=1), and withdrawn manuscripts (n=1) were excluded. Finally, thirteen studies were included for quantitative pooling and metaanalysis. Eight of these studies were from the PubMed database, three were from the CNKI database, and two were from the Wanfang database. In total, the thirteen studies included 756 patients and 611 matched controls. The study selection process is summarized in Figure 1. The characteristics of these studies are reported in Table 1. These included studies were published and peer reviewed. All 13 studies were case-control (Zhang and Hao, 2009; Zhang et al., 2013;

TABLE 1 Characteristics of the included studies.

Year	Author	Country	Sample sizes (Case/HC)	Gender (Female/Male)	Age category	epilepsy type	Type of MMPs	Sample source	Assay type	Mean age (Case/HC)	Serum MMP-9 Concentrations ("x ± s) (Case/ HC, ng/mL)
2023	Cudna et al. (2023)	Poland	100 (50/50)	Case:19/31 HC:24/26	Adult	Bilateral tonic- clonic seizures	MMP-9	Serum	ELISA	Case:47 ± 19.7, range (19–85) HC:43.3 ± 16, range (18–88)	$\begin{array}{c} 1\text{-}3h\\ Case:1447.98\pm491.54\\ HC:724.65\pm295.27\\ 24h\\ Case:1078.42\pm402.58\\ HC:724.65\pm295.27\\ 72h\\ Case:863.26\pm396.32\\ HC:724.65\pm295.27\\ Case:(female n=19/male n=31)\\ 1\text{-}3h\\ 1361.95\pm381.8/1500.72\pm547.36\\ 24h\\ 1016.01\pm360.27/1116.67\pm427.62\\ 72h915\pm478.18/831.54\pm341.49\\ HC:(female n=24/male n=26)\\ 736.85\pm358.84/731.4\pm228.34\\ \end{array}$
2023	Bronisz et al. (2023)	Poland	200 (100/100)	Case:52/48 HC:52/48	Adult	Epilepsy in the interictal	MMP-9	Serum	ELISA	Case:43.01±1.53, range (19–82) HC:42.16±1.58, range (17–84)	Case:846.66±56.35 HC:533.35±32.89
2020	Huang et al. (2020)	China	247 (127/120)	Case:55/72 HC:51/69	Adult	Epilepsy	MMP-9	SERUM	ELISA	Case:60.4±7.6, range (34–71) HC:59.8±8.0, range (35–70)	Case:1.42±0.39 HC:1.04±0.26
2020	El Moneam Abdallah et al. (2019)	Egypt	60 (30/30)	Case:14/16 HC:14/16	Children	Epilepsy	MMP-9	Serum	ELISA	Case: 8.43 ± 3.33 HC:7.89 ± 2.5	Case:6.45±3.33 HC:2.83±1.23

(Continued)

Year	Author	Country	Sample sizes (Case/HC)	Gender (Female/Male)	Age category	epilepsy type	Type of MMPs	Sample source	Assay type	Mean age (Case/HC)	Serum MMP-9 Concentrations ("x ± s) (Case/ HC, ng/mL)
2020	Tao et al. (2020)	China	151 (101/50)	Case:39/62 HC:22/28	Adult	Epilepsy	MMP-9	Serum	ELISA	Case:38.21 ± 1.59 HC:43.91 ± 1.81	Case:2799.67 ± 69.36 HC:1703.61 ± 67.80 Idiopathic epilepsy n = 43 Case:2882.32 ± 104.14 HC:1703.61 ± 67.80 Symptomatic epilepsy n = 58 Case:2752.44 ± 91.95 HC:1703.61 ± 67.80
2020	Li et al. (2020)	China	94 (64/30)	Case:28/36 HC:13/17	Children	Epilepsy with different frequency and duration	MMP-9	Serum	ELISA	Case:6.3 ± 1.5 HC:6.1 ± 1.4	Case:12.74 \pm 1.46 HC:4.52 \pm 1.48 Epilepsy non frequent non persistent state n = 27 Case:10.23 \pm 1.69 HC:4.52 \pm 1.48 Frequent seizures n = 21 Case:12.31 \pm 1.21 HC:4.52 \pm 1.48 Epileptic status n = 16 Case:14.01 \pm 1.75 HC:4.52 \pm 1.48 Comprehensive seizure of epilepsy n = 45 Case:13.57 \pm 2.36 HC:4.52 \pm 1.48 Partial seizure of epilepsy n = 19 Case:13.68 \pm 2.41 HC:4.52 \pm 1.48
2019	Wang (2019)	China	88 (60/28)	Case:32/28 HC:16/12	Adult	Epilepsy	MMP-9	Serum	ELISA	Case:32.5±13.3 HC:33.0±12.0	Case:118.1±27.6 HC:172.5±63.5

TABLE 1 (Continued)

Year	Author	Country	Sample sizes (Case/HC)	Gender (Female/Male)	Age category	epilepsy type	Type of MMPs	Sample source	Assay type	Mean age (Case/HC)	Serum MMP-9 Concentrations ('x±s) (Case/ HC, ng/mL)
2019	Zhang (2019)	China	90 (60/30)	NA	Children	Idiopathic epilepsy	MMP-9	Serum	ELISA	Epilepsy non frequent non persistent state Case:5.1±0.45 HC:NA Frequent seizures Case:4.2±0.78 HC:NA Epileptic status Case:3.9±0.14 HC:NA	Epilepsy non frequent non persistent state $n = 25$ Case: 9.73 ± 1.57 HC: 4.53 ± 0.91 Frequent seizures $n = 20$ Case: 13.17 ± 0.71 HC: 4.53 ± 0.91 Epileptic status $n = 15$ Case: 13.94 ± 0.93 HC: 4.53 ± 0.91 Comprehensive seizure of epilepsy n = 35 Case: 12.34 ± 1.95 HC: 4.53 ± 0.91 Partial seizure of epilepsy $n = 25$ Case: 11.32 ± 2.46 HC: 4.53 ± 0.91
2018	Meguid et al. (2018)	Egypt	60 (30/30)	NA	Adult	Epilepsy	MMP-9	Serum	ELISA	NA	Case:968.3±661 HC:364.7±223.8
2018	Bronisz et al. (2018)	Poland	88 (44/44)	NA	Adult	Epilepsy	MMP-9	Serum	ELISA	NA	Case:909.7±91.3 HC:634.2±40.8
2017	Cudna et al. (2017)	Poland	86 (43/43)	Case:19/24 HC:19/24	Adult	Generalized tonic–clonic seizure (GTC)	MMP-9	Serum	ELISA	Case:42.8±17.8, range (19–84) HC:43.2±16.8, range (18–88)	Case:(female/male) 1-3 h 1432.88 ± 90.0/1588.1 ± 113.0 24 h 1016.00 ± 82.6/1116.8 ± 82.1 72 h 828.15 ± 73.7/828.44 ± 72.7 HC:(female/male) 738.05 ± 87.2/715.76 ± 48.0

10.3389/fnins.2024.1296876

Serum MMP-9 Concentrations (⁻x ± s) (Case/ HC, ng/mL)	Case: 4h 19.57±8.72 24h 17.69±9.74 60h 14.62±10.03 7d 13.67±5.53 HC:10.65±1.92	24h Case:1.28±0.19 HC:1.02±0.24 72h Case:1.21±0.22 HC:1.02±0.24
Mean age (Case/HC)	NA	NA
Assay type	ELISA	ELISA
Sample source	Serum	Serum
Type of MMPs	MMP-9	6-4MM
epilepsy type	Generalized tonic-clonic seizure (GTC)	Epileptic seizure
Age category	Adult	Children
Gender (Female/Male)	NA	Case:7/9 HC:8/8
Sample sizes (Case/HC)	71 (31/40)	32 (16/16)
Country	China	China
Author	Zhang et al. (2013)	Zhang and Hao (2009)
Year	2013	2009

Cudna et al., 2017; Bronisz et al., 2018; Meguid et al., 2018; El Moneam Abdallah et al., 2019; Wang, 2019; Zhang, 2019; Huang et al., 2020; Li et al., 2020; Tao et al., 2020; Bronisz et al., 2023; Cudna et al., 2023) studies. Enzyme-linked immunoassay is a unified method for MMP-9 detection. The NOS (Stang, 2010) was applied to assess the quality of the selected studies. The results are presented in Table 2.

3.2 Main association between MMP-9 level and epilepsy

Since only 8 out of the 13 papers had complete total MMP-9 data, we conducted a random-effects meta-analysis of the 8 studies that were included and performed to generate forest plots (Bronisz et al., 2018; Meguid et al., 2018; El Moneam Abdallah et al., 2019; Wang, 2019; Huang et al., 2020; Li et al., 2020; Tao et al., 2020; Bronisz et al., 2023). The remaining 5 papers were used for subgroup analysis. Figure 2A illustrates that the MMP-9 level in patients with epilepsy was significantly higher than that in the matched controls (SMD = 4.18, 95% CI = 2.18–6.17, p < 0.00001; Figure 2A). A sensitivity analysis was conducted to evaluate the stability of the results. The studies by Bronisz et al. (2018), Meguid et al. (2018), Tao et al. (2020) had a substantial influence on the results. Such studies significantly extended the effect size, which may have a detrimental effect on the robustness of the meta-analysis results (Figure 2B). After exclusion of the three studies, the results changed (SMD=2.70, 95% CI=0.36-5.04, p < 0.00001), and the heterogeneity decreased (Figure 2C). Accordingly, the current meta-analysis data are relatively reliable and credible. Visual assessment of a funnel plot did not reveal publishing bias (Figure 2D). Begg's test was performed on eight studies (Z=1.35, p = 0.315). Given that p > 0.05, the results indicated no publication bias. However, the meta-analysis did show severe heterogeneity (df = 4, $p < 0.0001, I^2 = 99\%$).

Further meta-regression analysis (p > 0.05) showed that the year of publication and country were not the sources of heterogeneity in these eight papers. It is important to note that the meta-regression analysis was calculated based on the _ES value. Huang et al. (2020) had a value of 0 for _ES and were therefore excluded from the analysis. In the end, seven studies were included in this meta-regression analysis (Figure 2E). And the result of meta-regression analysis is consistent with the results of the subgroup analyses that explored the source of heterogeneity based on country (Figure 3A).

3.3 Subgroup analysis by country

Eight studies reported serum MMP-9 levels in epilepsy patients and matched controls. Four studies reported MMP-9 levels in epilepsy patients and matched controls from China. The subgroup analysis of different countries was performed, and random effect models were selected based on the presence of heterogeneity (China: df=3, $I^2 = 99\%$, p < 0.00001; Poland: df=1, $I^2 = 97\%$, p < 0.00001; Egypt: df=1, $I^2 = 0\%$, p = 0.59; Figure 3A). The meta-analysis indicated that the MMP-9 levels in China (SMD=5.15, 95% CI=1.62–8.68, p=0.004; Figure 3A), Poland (SMD=5.31, 95% CI=2.47–8.16, p=0.0003; Figure 3A), and Egypt (SMD=1.31, 95% CI=0.91–1.71, p < 0.00001; Figure 3A) in epilepsy patients were higher than those in the control group.

	Studies	Selection	Comparability	Exposure	Total
2023	Cudna et al. (2023)	****	*	* *	7 stars
2023	Bronisz et al. (2023)	* * * *	**	**	8 stars
2020	Huang et al. (2020)	* * *	**	*	6 stars
2020	El Moneam Abdallah et al. (2019)	* * *	*	*	5 stars
2020	Tao et al. (2020)	* * *	* * *	*	7 stars
2020	Li et al. (2020)	**	**	**	6 stars
2019	Wang (2019)	**	**	*	5 stars
2019	Zhang (2019)	**	*	**	5 stars
2018	Meguid et al. (2018)	* * *	**	**	7 stars
2018	Bronisz et al. (2018)	* * * *	**	*	7 stars
2017	Cudna et al. (2017)	* * *	**	*	6 stars
2013	Zhang et al. (2013)	**	*	*	4 stars
2009	Zhang and Hao (2009)	**	*	*	4 stars

TABLE 2 The quality of the selected studies was assessed using the NOS.

3.4 Subgroup analysis by age category

Further subgroup analysis was conducted according to the age of the patients. In adult patients, $(df=5, p < 0.00001; I^2 = 99\%)$, the serum MMP-9 level was significantly higher (SMD=4.44, 95% CI=1.94–6.93, p=0.0005, Figure 3B) in the experimental group than in the control group. Two studies reported that the serum MMP-9 level in children with epilepsy was not significantly different from that in the control group (p=0.09, Figure 3B). This finding indicates a significant association between serum MMP-9 level and epilepsy in adult.

3.5 Subgroup analysis by seizure types

Different seizure types were also compared. Three of the eight studies that analyzed serum samples mentioned the serum MMP-9 level in patients with epilepsy (patients who have been seizure-free for at least 7 days). After the combined analysis, substantial difference in MMP-9 levels can be observed between patients with seizure-free epilepsy (SMD = 2.65, 95% CI = 0.66–4.65, p = 0.009; Figure 3C). Five of the eight studies that analyzed serum samples mentioned the serum MMP-9 level in patients with epileptic seizures (including generalized seizures, focal seizures, bilateral tonic–clonic seizures, etc.). The meta-analysis after pooling the data (df = 4, p < 0.00001; I^2 = 99%) indicated that the serum MMP-9 level in patients with epileptic seizures was significantly higher than that in the control group (SMD = 5.19, 95% CI = 1.45–8.92, p = 0.006, Figure 3C).

3.6 Relationship between duration of seizures and serum MMP-9

Two studies reported serum MMP-9 levels in male and female epilepsy patients and matched controls at 1–3, 24, and 72h after seizure. Four studies reported serum MMP-9 levels in epilepsy patients and matched controls at 1–3, 24, and 72h after seizure. The subgroup analysis of different durations of seizures was performed, and the fixed and random-effects models were selected based on the

presence of heterogeneity/ The value of *p* for heterogeneity was greater than 0.05 by using a random effects model. The meta-analysis indicated that the serum MMP-9 levels at 1–3, 24, and 72 h after seizure in female (1–3h: SMD=4.60, 95% CI=-1.29–10.49, *p*=0.13; 24 h: SMD=1.95, 95% CI=-0.44–4.34, *p*=0.11; 72 h: SMD=0.74, 95% CI=0.08–1.39, *p*=0.03; Figure 3D) and male (1–3h, SMD=4.60, 95% CI=-1.29–10.49, *p*=0.13; 24 h: SMD=1.95, 95% CI=-0.44–4.34, *p*=0.11; 72 h: SMD=0.74, 95% CI=0.08–1.39, *p*=0.03; Figure 3D) and male (1–3h, SMD=4.60, 95% CI=-1.29–10.49, *p*=0.13; 24 h: SMD=1.95, 95% CI=-0.44–4.34, *p*=0.11; 72 h: SMD=0.74, 95% CI=0.08–1.39, *p*=0.03; Figures 3D,E) epilepsy patients showed no substantial difference between with the control groups.

The meta-analysis of the four studies indicated that the serum MMP-9 levels at 1–3 and 24 h were significantly higher (1–3 h: p < 0.00001; 24 h: SMD = 1.02, 95% CI = 0.70–1.34, p < 0.00001, Figure 3F) than those of the matched controls. Meanwhile, the serum MMP-9 level at 72 h was not significantly different from that in the control group (72 h: SMD = 3.05, 95% CI = 0.36–5.73, p = 0.03, Figure 3F).

4 Discussion

Data suggest that approximately 30% of patients with epilepsy do not achieve satisfactory control of the disease by drug treatment, and the proportion of patients with epileptic drug resistance remains unchanged, despite the introduction of new antiepileptic drugs in the last 2 decades, which have not effectively addressed the issue of drug resistance (Kwan et al., 2010; Golyala and Kwan, 2017). On this basis, ideal biological markers that can help the development of new antiepileptic drugs for patients with drug-resistant epilepsy must be determined. Although our comprehension of the physiopathology of epilepsy is not yet comprehensive, existing evidence points to the significant involvement of neuroinflammation, blood-brain barrier dysfunction, and alternation in synaptic remodeling function in epileptic seizure processes. MMP-9 is a protease that regulates a variety of cellular activities, can facilitate the degradation of extracellular matrix proteins, participate in maintaining the integrity of the BBB, and may be involved in the pathogenesis of seizures (Cudna et al., 2017). Pijet et al. (2018) conducted a study on animal

models with traumatic brain injury. They found that the elevated level of MMP-9 induced by a traumatic brain injury is related to the activity of spontaneous seizures in the later stage after a traumatic brain injury. The elevated level of MMP-9 increases the sensitivity of drug-induced seizures and the incidence of spontaneous seizures. The high levels of MMP-9 after a traumatic brain injury can promote late-onset epilepsy (Konopka et al., 2013), which may be related to neuroinflammation, synaptic plasticity, and the destruction of the BBB (Meguid et al., 2018). In addition, studies have shown that MMP-9 may play a role in the development of epileptogenesis as an intermediate mediator of neuroimmune processes (Ragin et al., 2009). For instance, elevated levels of high mobility group box 1 protein (HMGB1) in the neuroimmune process may activate metalloproteinases in circulating immune cells and glial cells, leading to increased cytokine production and recurrent seizures (Wang et al., 2021; Li et al., 2022).

Recent studies have shown that that the serum MMP-9 concentration in epilepsy patients was higher than that in the healthy population, which is consistent with previous reports wherein the serum (Suenaga et al., 2008; Li et al., 2013; Cudna et al., 2017) levels of MMP-9 in epilepsy patients were significantly higher after seizures. Therefore, the concentration of MMP-9 in serum may be used as a peripheral marker of neuronal injury and neuroinflammation in the brain associated with epilepsy.

We reviewed current studies on the relationship between serum MMP-9 level and epilepsy and evaluated the potential of MMP-9 as a marker of epilepsy. A total of 13 studies were eligible for inclusion, with a total of 756 patients and 611 matched controls. Eight studies contained results on total serum MMP-9 levels. The corrected metaanalysis integrated and analyzed eight studies that included a total of 556 patients and 432 matched controls and provided adequate quantitative data to compensate for the small sample sizes of the

individual studies, which may lead to insignificant, opposite, or enlarged differences. The meta-analysis that included serum MMP-9 data for all epilepsy patients supported a significant increase in MMP-9 in epilepsy patients compared with the control group (SMD = 4.18, 95% CI = 2.18–6.17, p < 0.00001). Begg's test indicates no publication bias in these eight articles. The results of the heterogeneity test suggested severe heterogeneity among the studies, which affected the validity of the meta-analysis. Therefore, we conducted a sensitivity analysis to eliminate three studies that may have caused heterogeneity. We also conducted a subgroup analysis to investigate factors potentially influencing the results.

The subgroup analysis of country showed that serum MMP-9 levels were higher in Chinese, Polish and Egyptian patients with epilepsy than in controls, with more pronounced in Egypt. This may be attributed to race, the degree of economic development, the natural and social environment of the area, and other residual confounding effects. Additionally, the unstandardized sampling time for epileptic patients in different countries may also be an important confounding factor (Maroso et al., 2010). Moreover, the subgroup analysis of age category indicated that the serum MMP-9 level of adult patients with epilepsy was significantly higher than that of matched controls. By contrast, no significant difference in the serum MMP-9 level can be observed between children with epilepsy and matched controls. This finding illustrates that the serum MMP-9 level of children with epilepsy may have little correlation with the disease. The subgroup analysis of seizure types also indicated high serum MMP-9 levels in patients of seizure-free epilepsy (patients who have been seizure-free for at least 7 days) and those with epileptic seizures compared with the healthy control group. The patient duration of seizure subgroup analysis showed that the serum MMP-9 levels at 1-3, 24, and 72 h after seizure in female and male epilepsy patients showed no substantial difference between with the control group. Furthermore, the serum MMP-9 levels at 1-3 and 24h were significantly higher than those of the matched controls. Nevertheless, the serum MMP-9 level at 72 h was not significantly different from that in the control group. This finding suggests that the elevated serum MMP-9 levels may be related to seizure duration, independent of sex. The subgroups of relevant categorical variables did not fully explain the source of heterogeneity,

	Experim	nental	Co	ntrol			Std. Mean Difference	Std. Mean Difference
Study or Subgroup	Mean	SD Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.1.1 China			470 5			40.70	4 00 / 4 70 0 70	
2019 Suye Wang 2020 Hugi Tao et al	118.1	∠/.b b0 0.36 101	1703.61	67.9	28	12.7%	-1.28 [-1.76, -0.79] 15 94 [14 00 17 60]	
2020 Huai tao etal. 2020 Li Nie etal	12,799.07 0	9.30 101 1.46 64	4.52	1 48	30	12 5%	5 56 [4 64 6 48]	
2020 Qiuji Huang et al.	1.42	0.39 127	1.04	0.26	120	12.8%	1.14 [0.87, 1.41]	•
Subtotal (95% CI)		352			228	49.5%	5.15 [1.62, 8.68]	◆
Heterogeneity: Tau ² = 12.68; Chi ² = 4 Test for overall effect: Z = 2.86 (P = 0.	27.21, df = 3 004)	(P < 0.0000	1); I² = 99%	•				
3.1.2 Poland								
2018 Bronisz E et al.	909.7	91.3 44	634.2	40.8	44	12.6%	3.86 [3.14, 4.58]	•
2023 El zbieta Bronis et al. Subtotal (95% CI)	846.66 5	6.35 100	533.35	32.89	100	12.6%	6.77 [6.04, 7.49] 5 31 [2 47, 8 16]	▲
Heterogeneity: Tau ² = 4.08; Chi ² = 31 Test for overall effect: Z = 3.66 (P = 0.	.11, df = 1 (P 0003)	< 0.00001);	I ² = 97%		144	23.27	5.51 [2.47, 6.10]	
3.1.3 Egypt			0047			10 70	1 04 10 05 4 70	
2016 Megula N A et al. 2020 Naglas Abdelmoneam et al.	968.3	001 30 222 20	364.7	1 22	30	12.7%	1.21 [0.65, 1.76]	l.
Subtotal (95% CI)	0.45	0.00 50 60	2.03	1.23	60	25.3%	1.31 [0.91, 1.71]	•
Heterogeneity: Tau ² = 0.00; Chi ² = 0.2 Test for overall effect: Z = 6.47 (P < 0.	28, df = 1 (P = 00001)	: 0.59); I ² = 0)%					
Total (95% CI)		556			432	100.0%	4.18 [2.18, 6.17]	◆
Heterogeneity: Tau ² = 8.09; Chi ² = 67	9.88, df = 7 (F	P < 0.00001); I² = 99%					
Test for overall effect: Z = 4.10 (P < 0. Test for subaroup differences: Chi ² =	0001) 11.76. df = 2	(P = 0.003)	. I² = 83.0%					Favours [experimental] Favours [control]
	Experim	nental	Co	ntrol			Std Mean Difference	Std Mean Difference
Study or Subaroup	Moan	CD Total	Moan	¢D.	Total	Woight	IV Dandom 05% Cl	W Pandom 05% Cl
	medii	30 10(8)	meall	30	TUL	weight	17, Natioutil, 93% CI	IV, Raliuvili, 95% Ci
J.Z.1 douit								
2018 Bronisz E et al.	909.7	91.3 44	634.2	40.8	44	12.6%	3.86 [3.14, 4.58]	•
2018 Meguid N A et al.	968.3	661 30	364.7	223.8	30	12.7%	1.21 [0.65, 1.76]	•
2019 Suve Wang	118.1	27.6 60	172.5	63.5	28	12.7%	-1.28 [-1.76, -0.79]	•
2020 Huai Tao et al	2 799 67 6	9.36 1.01	1 703 61	67.8	50	11 5%	15 84 [14 00 17 69]	
2020 Niuli Huong et el	4.40	0.00 101	1,00.01	01.0	120	12.00	4 4 4 10 07 4 441	
2020 Giuji Huang et al.	1.42	0.39 12/	1.04	0.20	120	12.8%	1.14 [0.87, 1.41]	[
2023 El zbieta Bronis et al.	846.66 5	0.35 100	533.35	32.89	100	12.6%	6.77 [6.04, 7.49]	•
Subtotal (95% CI)		462			372	74.9%	4.44 [1.94, 6.93]	
Heterogeneity: Tau ² = 9.53; Chi ² = 60 Test for overall effect: Z = 3.48 (P = 0.	9.19, df = 5 (F 0005)	P < 0.00001); I² = 99%					
3.2.2 children								
2020 Li Nie et al.	12.74	1.46 64	4.52	1.48	30	12.5%	5.56 [4.64, 6.48]	+
2020 Naglaa Abdelmoneam et al	6.45	3 3 3 2 0	2.02	1 22	20	12.7%	1 42 [0 95 1 00]	
Subtotal (05% CI)	0.40	0.00 00	2.03	1.23	50	25.4%	3 40 [0.60 7 53]	
Subtotal (95% CI)		94			00	23.1%	3.40 [-0.38, 7.33]	\bullet
Heterogeneity: Tau² = 8.40; Chi² = 56	.U4, df = 1 (P	< 0.00001);	I*= 98%					
Test for overall effect: Z = 1.68 (P = 0.	09)							
		556			432	100.0%	4.18 [2.18, 6.17]	◆
Total (95% CI)								
Total (95% CI) Heterogeneity: Tau² = 8.09: Chi² = 67	9.88. df = 7 (F	P < 0.00001); 2 = 99%					
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² = 67 Test for overall effect 7 = 4.10 /P < 0	9.88, df = 7 (F	P < 0.00001); I² = 99%					-20 -10 Ó 10 20
Total (95% CI) Heterogeneity: Tau² = 8.09; Chi² = 67 Test for overall effect: Z = 4.10 (P < 0.	9.88, df = 7 (F 0001)	P < 0.00001); I² = 99%					-20 -10 0 10 20 Favours [experimental] Favours [control]

though it may be attributed to other residual confounding effects. The unstandardized sampling time following an epileptic seizure could be a significant confounding variable. Epileptic seizures and being seizure-free are important trigger factors for the release of MMP-9, which may blur its status as a biomarker for epilepsy assessment. These standard practices must be incorporated, specifically in biomarker research. In the future, researchers should conduct additional studies using standardized sampling times following epileptic seizures and prioritizing the development of more appropriate sampling plans and schedules.

The meta-analysis have limitations because of the small number and variable quality of the included studies. Most of the data used in this study originated from clinical surveys and may have been impacted by biases related to measurement, selection, and interviews. Additionally, several studies lacked a detailed description of the type of epileptic seizure, and the potential effects of factors, such as high fever or trauma, on the serum MMP-9 levels cannot be ignored. Besides, we did not use age and sex as covariates for exploring the relationship between serum MMP-9 and epilepsy due to the lack of clear criteria for dividing the age group and the absence of sex classification in some studies. Instead, we performed subgroup analyses of age and sex separately. Furthermore, it's worth mentioning that we overlooked the potential effect of the medications taken by the subjects on serum MMP-9 levels in this meta-analysis since the studies included in the meta-analysis specified that the epilepsy patients had been seizure-free for at least

	Exper	intentui			iluoi	-		stu. medii Dillerence	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% Cl
3.3.1 epilepsy									
2020 Li Nie et al.	12.74	1.46	64	4.52	1.48	30	12.5%	5.56 [4.64, 6.48]	+
2020 Naglaa Abdelmoneam et a	al. 6.45	3.33	30	2.83	1.23	30	12.7%	1.42 [0.85, 1.99]	*
2020 Qiuji Huang et al.	1.42	0.39	127	1.04	0.26	120	12.8%	1.14 [0.87, 1.41]	'
Subtotal (95% CI)			221			180	37.9%	2.65 [0.66, 4.65]	•
Heterogeneity: Tau² = 3.01; Chi² Test for overall effect: Z = 2.61 (F	= 81.74, df = 2 P = 0.009)	(P < 0.0)	0001); P	²= 98%					
3.3.2 seizure									
2018 Bronisz E et al.	909.7	91.3	44	634.2	40.8	44	12.6%	3.86 [3.14, 4.58]	•
2018 Mequid N A et al.	968.3	661	30	364.7	223.8	30	12.7%	1.21 [0.65, 1.76]	•
2019 Suye Wang	118.1	27.6	60	172.5	63.5	28	12.7%	-1.28 [-1.760.79]	•
2020 Huai Tao et al.	2,799.67	69.36	101	1,703.61	67.8	50	11.5%	15.84 [14.00, 17.68]	
2023 El zbieta Bronis et al.	846.66	56.35	100	533.35	32.89	100	12.6%	6.77 [6.04. 7.49]	
Subtotal (95% CI)			335			252	62.1%	5.19 [1.45, 8.92]	◆
Heterogeneity: Tau² = 17.89; Ch Test for overall effect: Z = 2.72 (F	i² = 589.54, df = ° = 0.006)	4 (P < 0	.00001)); I² = 99%)				
Total (95% CI)			556			432	100.0%	4.18 [2.18, 6.17]	◆
Total (95% CI) Heterogeneity: Tau² = 8.09: Chi²	= 679.88. df = 7	7 (P < 0.1	556	I ² = 99%		432	100.0%	4.18 [2.18, 6.17]	<u> </u>
Total (95% CI) Heterogeneity: Tau² = 8.09; Chi² Test for overall effect: Z = 4.10 (F	= 679.88, df = 7 9 < 0.0001)	7 (P < 0.(556 00001);	² = 99%		432	100.0%	4.18 [2.18, 6.17]	-20 -10 0 10 20
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for subgroup differences: C	= 679.88, df = 7 9 < 0.0001) chi² = 1.37, df =	7 (P < 0.0 1 (P = 0.	<mark>556</mark> 00001); 24). I ² =	² = 99% : 27.2%		432	100.0%	4.18 [2.18, 6.17]	-20 -10 0 10 20 Favours [experimental] Favours [control]
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect Z = 4.10 (F Test for suboroup differences: C	= 679.88, df = 7 ° < 0.0001) Chi² = 1.37. df =	7 (P < 0.(1 (P = 0.	<mark>556</mark> 00001); 24). I ² =	²= 99% : 27.2%		432	100.0%	4.18 [2.18, 6.17]	-20 -10 0 10 20 Favours [experimental] Favours [control]
Total (95% CI) Heterogeneity: Tau² = 8.09; Chi² Test for overall effect: Z = 4.10 (F Test for suborouo differences: C	= 679.88, df = 7 < 0.0001) chi² = 1.37. df = Experime	? (P < 0.(1 (P = 0. ental	556 00001); 24). I ² =	² = 99% : 27.2% Cont	rol	432	100.0% S	4.18 [2.18, 6.17]	-20 -10 0 10 20 Favours [experimental] Favours [control]
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h	= 679.88, df = 7 2 < 0.0001) 2hi ² = 1.37. df = Experime Mean	? (P < 0.1 1 (P = 0. ental <u>SD T</u> c	556 00001); 24). F= otal M	² = 99% : 27.2% Cont Mean	rol SD T	432 Total V	100.0% S Weight	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV, Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1.3h 2017 Agnieszka Cudna et al.	= 679.88, df = 7 < 0.0001) hi ² = 1.37. df = <u>Experim</u> <u>Mean</u> 1,432.88	7 (P < 0.1 1 (P = 0. 90	556 00001); 24). F ² = 0tal N 19 73	² = 99% : 27.2% Cont Mean 38.05	rol <u>SD T</u> 87.2	432 <u>total V</u> 19	100.0% S <u>Weight</u> 12.5%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% Cl
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al.	= 679.88, df = 7 < 0.0001) :hi ² = 1.37. df = <u>Experime</u> 1,432.88 1,361.95 3t	? (P < 0.1 1 (P = 0. <u>sp ta</u> 90 81.8	556 00001); 24). F ² = 0tal M 19 73 19 73	² = 99% : 27.2% Cont Mean 38.05 36.85 35	rol <u>SD T</u> 87.2 8.84	432 otal V 19 24 43	100.0% S <u>Veight</u> 12.5% 17.6% 30.1%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [1.29, 10.40]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV, Random, 95% Cl
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (= 679.88, df = 7 < 0.0001) chi ² = 1.37, df = Experime Mean 1,432.88 1,361.95 3i hi ² = 32.88, df = P = 0.13)	7 (P < 0,1 1 (P = 0, <u>sp to</u> 90 81.8 1 (P < 0	556 00001); 24). ² = 0tal N 19 73 38 0.00001	[#] = 99% : 27.2% <u>Cont</u> Mean 38.05 36.85 35 36.85 35); [#] = 979	rol <u>SD T</u> 87.2 8.84 6	432 otal V 19 24 43	100.0% S <u>Veight</u> 12.5% 17.6% 30.1%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Heterogeneity: Tau ² = 17.54; CI Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al.	= 679.88, df = 7 < 0.0001) chi² = 1.37. df = Experime Mean 1,432.88 1,361.95 3 ni² = 32.88, df = P = 0.13) 1,016	7 (P < 0.1 1 (P = 0. ental <u>SD To</u> 81.8 :1 (P < 0 82.6	556 00001); 24). F ² = <u>otal N</u> 19 73 38 .000001 19 73	² = 99% : 27.2% <u>Vean</u> 38.05 36.85 35); ² = 979 38.05	rol <u>SD T</u> 87.2 8.84 6 87.2	432 otal V 19 24 43	S <u>Veight</u> 12.5% 17.6% 30.1%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% Cl
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al.	= 679.88, df = 7 > < 0.0001) >hi² = 1.37. df = Experime Mean 1,432.88 1,361.95 3 ni² = 32.88, df = P = 0.13) 1,016 ≤ 1,016 ≤ 1,016 ≤	7 (P < 0.1 1 (P = 0. ental <u>SD To</u> 90 81.8 1 (P < 0 82.6 0.27	556 00001); 24). F= <u>otal N</u> 19 73 38 0.00001 19 73 19 73 19 73	² = 99% : 27.2% <u>Cont</u> <u>Mean</u> 38.05 36.85 35); ² = 979 38.05 36.85 36.85 36.85 36.85 36.85 35	rol <u>SD T</u> 87.2 8.84 6 87.2 8.84	432 otal V 19 24 43 19 24	100.0% S <u>Veight</u> 12.5% 17.6% 30.1% 16.6% 17.8%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39]	-20 -10 0 10 20 Favours [experimental] Favours [control]
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C <u>Study or Subgroup</u> 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi	= 679.88, df = 7 < 0.0001) :hi ² = 1.37. df = Experime <u>Mean</u> 1,432.88 1,361.95 3: hi ² = 32.88, df = P = 0.13) 1,016 3: 1,016	7 (P < 0.1 1 (P = 0. ental <u>SD Tc</u> 90 81.8 1 (P < 0 82.6 0.27 1 (P < 0.1	556 00001); 24). F ² = 0tal N 19 73 38 0.00001 19 73 38 00001); I	² = 99% : 27.2% <u>Cont</u> 38.05 36.85 35 36.85 35 36.85 35 ² = 94%	rol <u>SD T</u> 87.2 8.84 6 87.2 8.84	432 total V 19 24 43 19 24 43	100.0% S Weight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi Test for overall effect: Z = 1.60 (= 679.88, df = 7 < 0.0001) chi ² = 1.37, df = Experime Mean 1,432.88 1,361.95 31 1,432.88, df = P = 0.13) 1,016 1,01	7 (P < 0.1 1 (P = 0. ental <u>SD Tc</u> 90 81.8 1 (P < 0. 82.6 0.27 1 (P < 0.)	556 00001); 24), P = 014 19 73 19 73 38 00001 19 73 38 00001; 19 73 38 00001	² = 99% : 27.2% <u>Cont</u> <u>Mean</u> 38.05	rol <u>SD T</u> 87.2 8.84 6 8.84 8.84 8.84	432 total V 19 24 43 19 24 43	100.0% S Veight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C <u>Study or Subgroup</u> 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi Test for overall effect: Z = 1.60 (3.4.3 72h	= 679.88, df = 7 < 0.0001) chi² = 1.37, df = Experime Mean 1,432.88 1,361.95 31 hi² = 32.88, df = P = 0.13) 1,016 1,	7 (P < 0.1 1 (P = 0. <u>SD Tc</u> 90 81.8 1 (P < 0. 82.6 0.27	556 00001); 24), F = 0tal N 19 73 19 73 19 73 19 73 38 00001); 10 73 10 73 38 00001); 10 73 10 75 10 75 10 75 10 75 10 75 10 75 10 75 10 75 10 75	² = 99% : 27.2% Cont Mean 38.05 36.85 35); ² = 979 38.05 36.85 35 ² = 94%	rol <u>\$D T</u> 87.2 8.84 6 87.2 8.84 87.2 8.84	432 otal V 19 24 43 19 24 43	100.0% S Weight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4%	4.18 [2.18, 6.17] td. Mean Difference IV. Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% Cl
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi Test for overall effect: Z = 1.60 (3.4.3 72h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al.	= 679.88, df = 7 < 0.0001) chi² = 1.37, df = Experime Mean 1,432.88 1,361.95 31 hi² = 32.88, df = P = 0.13) 1,016 1,	7 (P < 0.1 1 (P = 0. <u>SD Tc</u> 90 81.8 1 (P < 0. 82.6 0.27 1 (P < 0.) 73.7 8.18	556 00001); 24). P = 0 0 0 0 0 0 0 0 0 0 0 0 0	² = 99% : 27.2% Cont Mean 38.05 36.85 35); ² = 979 38.05 36.85 35 ² = 94% 38.05 38.05 35 ² = 94%	rol <u>SD</u> T 87.2 8.84 6 87.2 8.84 87.2 8.84	432 total V 19 24 43 19 24 43 19 24 43	100.0% S Veight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4% 17.6% 17.6% 17.9%	4.18 [2.18, 6.17] td. Mean Difference IV. Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C <u>Study or Subgroup</u> 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CH Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi Test for overall effect: Z = 1.60 (3.4.3 72h 2013 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al.	= 679.88, df = 7 < 0.0001) chi² = 1.37, df = Experime Mean 1,432.88 1,361.95 31 hi² = 32.88, df = P = 0.13) 1,016 1,016.01 36 1,015.01 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,016 1,017 1,016	7 (P < 0.1 1 (P = 0. <u>SD Tc</u> 90 81.8 1 (P < 0 82.6 0.27 1 (P < 0.1 73.7 8.18	556 00001); 24). P = 0 0 0 0 0 0 0 0 0 0 0 0 0	² = 99% : 27.2% Cont Mean 38.05 36.85 35); ² = 979 38.05 36.85 35 ² = 94% 36.85 35	rol <u>SD T</u> 87.2 8.84 6 87.2 8.84 87.2 8.84	432 total V 19 24 43 19 24 43 19 24 43	100.0% S Veight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4% 17.6% 17.9% 35.5%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34] 1.09 [0.41, 1.78] 0.42 [-0.19, 1.03] 0.74 [0.08, 1.39]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C <u>Study or Subgroup</u> 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 0.12; Chi Test for overall effect: Z = 2.20 (= 679.88, df = 7 < 0.0001) :hi ² = 1.37. df = Experime <u>Mean</u> 1,432.88 1,361.95 3: hi ² = 32.88, df = P = 0.13) 1,016 3: 1,016 3: 1,016 3: 1,016 3: 1,016 3: 1,016 4: P = 0.11) 828.15 7 915 47: P = 0.03)	7 ($P < 0.1$ 1 ($P = 0.1$ 1 ($P = 0.1$ 90 81.8 1 ($P < 0.1$ 82.6 0.27 1 ($P < 0.1$ 73.7 8.18 ($P = 0.1$)	556 00001); 24), P= 19 73 19 73 38 00001 19 73 38 00001; I 19 73 38 00001; I 19 73 38 5; P= 6	² = 99% : 27.2% Cont Mean 38.05 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36.85 35 36 36.85 35 36 36 36 36 36 36 36 36 36 36	rol <u>SD T</u> 87.2 8.84 6 87.2 8.84 87.2 8.84	432 total V 19 24 43 19 24 43 19 24 43	100.0% <u>Veight</u> 12.5% 17.6% 30.1% 16.6% 17.8% 34.4% 17.6% 17.9% 35.5%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34] 1.09 [0.41, 1.78] 0.42 [-0.19, 1.03] 0.74 [0.08, 1.39]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C Study or Subgroup 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 17.54; CH Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 2.80; Chi Test for overall effect: Z = 1.60 (3.4.3 72h 2017 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 0.12; Chi Test for overall effect: Z = 2.20 (Total (95% CI)	= 679.88, df = 7 < 0.0001) hi² = 1.37. df = Experime Mean 1,432.88 1,361.95 33 hi² = 32.88, df = P = 0.13) 1,016 36 1,016 36	7 (P < 0.1 1 (P = 0. 1 (P = 0. 1 (P < 0. 1 (P < 0.) 73.7 73.7 73.7 73.7 73.7 73.7	5556 00001); 24). P = 011 19 73 19 73 19 73 19 73 38 00001); I 19 73 38 0001); I 19 73 38 0001); I 19 73 19 73 10 73 10 74 10 74	² = 99% : 27.2% Cont Mean 38.05 36.85 35); ² = 979 38.05 36.85 35 ² = 94% 38.05 36.85 35 ³⁶ 51%	rol <u>SD T</u> 87.2 8.84 6 8.84 8.84 8.84 8.84	432 total V 19 24 43 19 19 24 43 19 19 19 19 19 19 19 19 19 19	100.0% S Weight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4% 17.6% 17.6% 17.9% 35.5% 100.0%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34] 1.09 [0.41, 1.78] 0.42 [-0.19, 1.03] 0.74 [0.08, 1.39] 2.19 [1.00, 3.37]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI
Total (95% CI) Heterogeneity: Tau ² = 8.09; Chi ² Test for overall effect: Z = 4.10 (F Test for suboroup differences: C <u>Study or Subgroup</u> 3.4.1 1-3h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Tau ² = 1.7.54; CI Test for overall effect: Z = 1.53 (3.4.2 24h 2017 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2017 Agnieszka	= 679.88, df = 7 < 0.0001) :hi ² = 1.37. df = Experime Mean 1,432.88 1,361.95 33 hi ² = 32.88, df = P = 0.13) 1,016 36 1,016 36 1,016 36 1,016 36 1,016 36 P = 0.11) 828.15 7 915 473 = 2.06, df = 1 P = 0.03) = 68.26, df = 6	7 ($P < 0.1$ 1 ($P = 0.2$ 90 81.8 1 ($P < 0.2$ 82.6 0.27 1 ($P < 0.2$ 73.7 8.18 ($P = 0.1$ 1 5 ($P < 0.1$	556 00001); 24), P= 19 73 19 73 38 00001 19 73 38 00001); I 19 73 38 00001); I 19 73 38 00001); I 19 73 38 00001); I 19 73 19 73 10 73 10 73 10 73 10 73	² = 99% : 27.2% <u>Cont</u> 38.05 36.85 35); ² = 979 38.05 36.85 35 ² = 94% 38.05 36.85 35 ² = 94% 38.05 51% ; ² = 93%	rol <u>SD T</u> 87.2 8.84 6 87.2 8.84 87.2 8.84	432 total V 19 24 43 19 19 24 43 19 19 19 19 19 19 19 19 10 10 10 10 10 10 10 10 10 10	100.0% S Weight 12.5% 17.6% 30.1% 16.6% 17.8% 34.4% 17.6% 17.9% 35.5% 100.0%	4.18 [2.18, 6.17] td. Mean Difference IV, Random, 95% CI 7.68 [5.75, 9.61] 1.66 [0.96, 2.37] 4.60 [-1.29, 10.49] 3.20 [2.21, 4.20] 0.76 [0.14, 1.39] 1.95 [-0.44, 4.34] 1.09 [0.41, 1.78] 0.42 [-0.19, 1.03] 0.74 [0.08, 1.39] 2.19 [1.00, 3.37]	-20 -10 0 10 20 Favours [experimental] Favours [control] Std. Mean Difference IV. Random, 95% CI

two weeks and had relatively stable conditions, indicating minimal fluctuation in serum MMP-9 levels. However, some of the literature did not clearly state whether the subjects were taking medications. Additionally, the subjects had different types of seizures and were taking different types of epilepsy drugs, which could have varying effects on serum MMP-9 levels.

Despite several limitations, the research was executed under strict inclusion and exclusion criteria and this is the first report on this topic. We gained a clearer understanding of how MMP-9 in serum functions as a biological marker of epilepsy through the subgroup analysis of country, age category, seizure types, and duration of seizures. Nonetheless, there are still some shortcomings that need to be addressed and this study has limitations in terms of the diagnosis and treatment of epilepsy. Therefore, a standardized study with a larger sample size must be conducted to verify the outcomes and establish the precise association between the MMP-9 level and the etiology, diagnosis, prognosis, and seizure status of epilepsy. Our research could potentially contribute to clinical diagnosis and treatment in the future.

5 Conclusion

This study presents evidentiary support that levels of MMP-9 are significantly elevated in individuals with epilepsy. The detection of MMP-9 is crucial in the early diagnosis of epilepsy, the evaluation of treatment effectiveness, prognosis, and determination of the key medical interventions.

tudy or Subaroup	Experim	SD Tot	Moon	Control	Total	Woight	Std. Mean Difference	Std. Mean Difference
.5.1 1-3h	wean	30 100	n mean	30	TUIdl	veight	iv, Ranuom, 95% Cl	
017 Agnieszka Cudna et al.	1,558.1	113 2	4 751.76	48	24	13.4%	9.14 [7.15, 11.13]	
2023 Agnieszka Cudna et al.	1,500.72 54	7.36 3	1 731.4	228.34	26	17.6%	1.75 [1.14, 2.37]	•
Subtotal (95% CI)		5	5		50	31.0%	5.38 [-1.85, 12.62]	
Heterogeneity: Tau² = 26.68; C Test for overall effect: Z = 1.46	chi² = 48.21, df = (P = 0.14)	= 1 (P < 0.0	0001); I² =	98%				
3.5.2 24h								
2017 Agnieszka Cudna et al.	1,116.8	82.1 2	4 751.76	48	24	15.9%	5.34 [4.09, 6.59]	+
2023 Agnieszka Cudna et al.	1,116.67 42	27.62 3	1 731.4	228.34	26	17.7%	1.08 [0.52, 1.64]	*
Subtotal (95% CI)	2-0740 46-	5	0043-17-1	270	50	33.7%	3.17 [-1.00, 7.34]	
Test for overall effect: Z = 1.49	(P = 0.14)	1 (P < 0.00	001); F=:	3770				
3.5.3 72h								
2017 Agnieszka Cudna et al.	828.44	72.7 2	4 751.76	48	24	17.6%	1.22 [0.60, 1.85]	-
2023 Agnieszka Cudna et al.	831.54 34	1.49 3	1 731.4	228.34	26	17.8%	0.33 [-0.19, 0.86]	L
Heterogeneity: Tau ² = 0.21: Ch	$h^2 = 4.60 \text{ df} = 4$	(P = 0.02)	J ² = 78%		50	33.4%	0.70 [-0.11, 1.64]	•
Test for overall effect: Z = 1.72	(P = 0.09)	(r = 0.03)	1 - 7070					
Total (95% CI)		16	5		150	100.0%	2.85 [1.44, 4.26]	◆
Heterogeneity: Tau ² = 2.85; Ch	ni ^z = 114.84, df =	= 5 (P < 0.0	0001); I ^z =	96%				
Taskes sugar U. Wash 7 . O OF.	(P < 0.0001)							-20 -10 0 10 20
Test for overall effect: Z = 3.95	(1 - 0.0001)							Eavours lexperimentall Eavours icontroll
Test for subaroup differences:	Chi ² = 2.71. df	= 2 (P = 0.)	26). I ^z = 26	.1%				Favours (experimental) Favours (control)
Test for overall effect. Z = 3.95 Test for subaroup differences:	Chi ² = 2.71. df	= 2 (P = 0.)	26). I ^z = 26	.1%			Std Mean Difference	Favours (experimental) Favours (control)
Test for overall effect; 2 = 3.95 Test for subaroup differences:	Chi ² = 2.71. df Experim Mean	= 2 (P = 0.) nental SD Tota	26). I ² = 26	.1% Control SD	Total	Weight	Std. Mean Difference IV, Random, 95% CI	Favours [experimental] Favours [control] Std. Mean Difference IV, Random, 95% Cl
Test for overall effect 2 = 3.95 Test for subgroup differences: Study or Subgroup 3.6.1 1-3h	Chi ² = 2.71. df Experim Mean	= 2 (P = 0.) nental <u>SD Tota</u>	26). I ^z = 26	.1% Control SD	Total	Weight	Std. Mean Difference IV, Random, 95% Cl	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al.	Chi [≈] = 2.71. df Experim <u>Mean</u> 1,447.98 49	= 2 (P = 0.1 nental <u>SD Tota</u> 91.54 5	26). I ^z = 26 <u>I Mean</u> 0 724.65	.1% Control SD 295.27	<u>Total</u> 50	Weight	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24]	Std. Mean Difference
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneiky Not applicable.	Chi ² = 2.71. df Experim <u>Mean</u> 1,447.98 49	= 2 (P = 0.1 nental <u>SD Tota</u> 91.54 5 5	26). * = 26 <u>I Mean</u> 0 724.65 0	.1% Control SD 295.27	<u>Total</u> 50 50	Weight 14.4% 14.4%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24]	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001)	= 2 (P = 0.1 nental <u>SD Tota</u> 01.54 5 5	26), I ² = 26 <u>I Mean</u> 0 724.65 0	.1% Control SD 295.27	<u>Total</u> 50 50	Weight 14.4% 14.4%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24]	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h	Chi ² = 2.71. df Experim <u>Mean</u> 1,447.98 49 (P < 0.00001)	= 2 (P = 0.1 nental <u>SD Tota</u> 01.54 5 5	26). I ^z = 26 <u>I Mean</u> 0 724.65 0	.1% Control SD 295.27	<u>Total</u> 50 50	Weight 14.4% 14.4%	Std. Mean Difference IV. Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24]	Std. Mean Difference IV. Random, 95% Cl
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qiangian Zhang et al.	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69	= 2 (P = 0.) nental <u>SD Tota</u> 91.54 5 9.74 3	26). ² = 26 <u>I</u> <u>Mean</u> 0 724.65 0 1 10.65 0 704.65	.1% Control SD 295.27	<u>Total</u> 50 50	Weight 14.4% 14.4%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24]	Std. Mean Difference IV. Random, 95% CI
Test for subaroup differences: <u>Study or Subaroup</u> 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% CI) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% CI)	(P < 0.0001) (P < 0.00001) 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40	= 2 (P = 0. nental <u>SD Tota</u> 31.54 5 9.74 3 12.58 5	 26). I[≠] = 26 1 Mean 0 724.65 0 724.65 0 724.65 	.1% Control SD 295.27 1.92 295.27	Total 50 50 40 50	Weight 14.4% 14.4% 14.3% 14.4% 28.8%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 (0.70, 1.41]	Std. Mean Difference IV. Random, 95% CI
Test for subarouo differences: <u>Study or Subarouo</u> differences: <u>3.6.1 1-3h</u> 2023 Agnieszka Cudna et al. <u>Subtotal (95% CI)</u> Heterogeneity: Not applicable Test for overall effect: Z = 7.46 <u>3.6.2 24h</u> 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. <u>Subtotal (95% CI)</u> Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24	(P < 0.0001) (P < 0.00001) 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 1 ² = 0.04, df = 1 (P < 0.00001)	= 2 (P = 0 nental <u>SD Totr</u> 31.54 5 9.74 3 12.58 8 (P = 0.85)	 № 26). * = 26 № Mean 0 724.65 0 724.65 1 10.65 0 724.65 1 10.724.65 1 10.724.65 	.1% Control SD 295.27 1.92 295.27	Total 50 50 40 50 90	Weight 14.4% 14.4% 14.3% 14.3% 28.8%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34]	Std. Mean Difference IV, Random, 95% CI
Test for subarous differences: <u>Study or Subgroup</u> 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h	(P < 0.0001) (P < 0.00001) 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 1 ³ = 0.04, df = 1 (P < 0.00001)	= 2 (P = 0 nental SD Tota 31.54 5 9.74 3 9.2.58 5 (P = 0.85)	26). ≠ = 26 <u>I</u> Mean 0 724.65 0 724.65 1 10.65 0 724.65 1 ≠ = 0%	.1% Control SD 295.27 1.92 295.27	Total 50 50 40 50 90	Weight 14.4% 14.4% 14.3% 14.3% 28.8%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34]	Std. Mean Difference IV. Random, 95% CI
Test for subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al.	(P < 0.0001) (P < 0.00001) 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 h ² = 0.04, df = 1 (P < 0.00001) 909.7	= 2 (P = 0 nental <u>SD Tota</u> 11.54 5 9.74 3 12.58 5 (P = 0.85) 91.3 4	 26). ² = 26 Mean 0 724.65 1 10.65 0 724.85 1 10.65 1 = 0% 4 634.2 	.1% Control SD 295.27 1.92 295.27 40.8	Total 50 50 40 50 90	Weight 14.4% 14.4% 14.3% 14.3% 28.8%	Std. Mean Difference IV, Random, 95% Cl 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.56, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58]	Std. Mean Difference IV, Random, 95% CI
Test for subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qiangian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2018 Meguid N A et al.	Chi ² = 2.71. df <u>Experim</u> 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 h ² = 0.04, df = 1 (P < 0.00001) 909.7 968.3	= 2 (P = 0 nental <u>SD Tota</u> 11.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3	 № 1 № 26). * = 26 № 4 № 4 № 634.2 № 364.7 	.1% Control <u>SD</u> 295.27 1.92 295.27 40.8 223.8	Total 50 50 40 50 90 44 30	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.3%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76]	Std. Mean Difference IV, Random, 95% CI
Test for overall effect: Z = 3.95 Test for subgroup 3.6.1 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 2013 Qiangian Zhang et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Beronisz E et al. 2018 Meguid N A et al. 2023 Agnieszka Cudna et al.	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 hi ² = 0.04, df = 1 (P < 0.00001) 909.7 968.3 863.26 39	= 2 (P = 0 nental <u>SD Tota</u> 11.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5	26). ² = 26 M Mean 0 724.65 0 1 10.65 0 724.65 1 ² = 0% 4 634.2 0 364.7 0 724.65	.1% Control 295.27 1.92 295.27 40.8 223.8 295.27	Total 50 50 40 50 90 44 30 50	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.3% 14.5%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79]	Std. Mean Difference IV, Random, 95% Cl
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2018 Meguid N A et al. 2023 Agnieszka Cudna et al.	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69 1,076.42 40 1,076.42 40 1,076.42 40 1,076.83 863.26 39 846.66 5	= 2 (P = 0 ental <u>SD Tota</u> 31.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5 16.35 10	26). ≠ = 26 M Mean 0 724.65 0 724.65 1 10.65 0 724.65 1 ≠ = 0% 4 634.2 0 364.7 0 724.65 1 ≠ = 0%	.1% Control 295.27 1.92 295.27 40.8 225.27 40.8 225.27 32.89	Total 50 50 40 50 90 40 50 90	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.5% 14.0%	Std. Mean Difference IV. Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 0.79 [6.02, 7.59]	Std. Mean Difference IV, Random, 95% Cl
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2018 Bronisz E et al. 2018 Meguid N A et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Elzbieta Bronis et al. Subtotal (95% Cl)	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 1,778.42 40 1,078.42 40 1	= 2 (P = 0 ental <u>SD Tota</u> 31.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 661 3 6632 5 10 22 - 2 (P = 0.85)	26). ² = 26 I Mean 0 724.65 0 724.65 1 1 ° = 0% 4 634.2 0 364.7 0 724.65 1 ° = 0% 4 634.2 0 364.7 0 724.65 0 363.35 4 00.724.65	.1% Control SD 295.27 1.92 295.27 40.8 2235.27 40.8 2235.27 32.89 2007	Total 50 50 40 50 90 44 44 30 50 100 224	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.3% 14.0% 56.8%	Std. Mean Difference IV. Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 3.05 [0.36, 5.73]	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2018 Bronisz E et al. 2023 Bronisz E et al. 2023 Bronisz E et al. 2024 Bronisz E et al. 2025 Bronisz E et al. 2026 Bronisz E et al. 2027 Bronisz E et al. 2028 Bronisz E et al. 2029 Bronisz E et al. 2020 Bron	Chi ² = 2.71. df <u>Experim</u> 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 h ² = 0.04, df = 1 (P < 0.00001) 909.7 968.3 863.26 39 846.66 5 h ² = 263.05, df = (P = 0.03)	= 2 (P = 0 ental SD Tota 31.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5 16.35 10 22 = 3 (P < 0.0	26). ≠ = 26 Mean 0 724.65 0 1 10.65 0 724.65 1 1 1 1 1 2 0 364.7 0 365.7 0	.1% Control SD 295.27 1.92 295.27 40.8 223.8 295.27 32.89 99%	Total 50 50 40 50 90 44 30 50 100 224	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.3% 14.0% 56.8%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 3.05 [0.36, 5.73]	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Elzbieta Bronis et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 7.41; Ch Test for overall effect: Z = 2.22 Total (95% Cl)	Chi ² = 2.71. df <u>Experim</u> 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 hi ² = 0.04, df = 1 (P < 0.00001) 909.7 968.3 863.26 39 863.26 39 846.66 5 hi ² = 263.05, df = (P = 0.03)	= 2 (P = 0 nental <u>SD Tota</u> 11.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5 10 22 = 3 (P < 0.0 35	26). ≠ = 26 Mean 0 724.65 0 724.65 1 10.65 0 724.65 1 ≠ = 0% 4 634.2 0 364.7 0 724.65 0 533.35 4 00001); ≠ = 5	.1% Control SD 295.27 1.92 295.27 40.8 223.8 295.27 32.89 99%	Total 50 50 40 50 90 44 30 50 100 224 364	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.0% 14.0% 56.8% 100.0%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 3.05 [0.36, 5.73] 2.27 [0.95, 3.60]	Std. Mean Difference IV, Random, 95% CI
Study or Subgroup 3.6.1 1.3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Qianqian Zhang et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2013 Diangian Zhang et al. 2013 Diangian Zhang et al. 2013 Ogiangian Zhang et al. 2013 Agnieszka Cudna et al. 2018 Bronisz E et al. 2018 Bronisz E et al. 2018 Bronisz E et al. 2018 Bronisz E et al. 2013 Zibieta Bronis et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 7.41; Ch Test for overall effect: Z = 2.22 Total (95% Cl) Heterogeneity: Tau ² = 3.12; Ch	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 1,078.42 40 1,078.42 40 1 ² = 0.04, df = 1 (P < 0.00001) 909.7 968.3 863.26 39 846.66 5 1 ² = 263.05, df = (P = 0.03) 1 ² = 283.98, df =	= 2 (P = 0 ental <u>SD Tota</u> 31.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5 16.35 10 22 = 3 (P < 0.0 35 = 6 (P < 0.0	26). ≠ = 26 M Mean 0 724.65 0 1 10.65 0 724.65 1 1 = 0% 4 634.2 0 364.7 0 724.65 0 364.7 0 724.65 0 533.35 4 00001); ≠ = 5 00001); ≠ =	.1% Control 295.27 1.92 295.27 40.8 295.27 40.8 295.27 32.89 99%	Total 50 50 40 50 90 44 40 50 90 100 224 364	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.0% 14.0% 56.8% 100.0%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 3.05 [0.36, 5.73] 2.27 [0.95, 3.60]	Std. Mean Difference IV. Random, 95% CI
Study or Subgroup 3.6.1 1-3h 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Not applicable Test for overall effect: Z = 7.46 3.6.2 24h 2013 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. 2023 Agnieszka Cudna et al. Subtotal (95% Cl) Heterogeneity: Tau ² = 0.00; Ch Test for overall effect: Z = 6.24 3.6.3 72h 2018 Bronisz E et al. 2023 Agnieszka Cudna et al. 2024 Agnieszka Cudna et al. 2025 Agnieszka Cudna et al. 2026 Cl) Heterogeneity: Tau ² = 7.41; Ch Test for overall effect: Z = 3.26 Netherogeneity: Tau ² = 3.12; Ch	Chi ² = 2.71. df Experim Mean 1,447.98 49 (P < 0.00001) 17.69 1,078.42 40 1,078.42 40 1,079.42 40 1	= 2 (P = 0 ental <u>SD Tota</u> 31.54 5 9.74 3 12.58 5 8 (P = 0.85) 91.3 4 661 3 16.32 5 10 22 = 3 (P < 0.0 35 = 6 (P < 0.0	<pre>26). * = 26</pre>	.1% Control SD 295.27 1.92 295.27 40.8 225.27 32.89 99% 98%	Total 50 50 40 50 90 44 40 50 100 224 364	Weight 14.4% 14.4% 14.3% 14.4% 28.8% 14.0% 14.0% 56.8% 100.0%	Std. Mean Difference IV, Random, 95% CI 1.77 [1.31, 2.24] 1.77 [1.31, 2.24] 1.06 [0.56, 1.56] 0.99 [0.58, 1.41] 1.02 [0.70, 1.34] 3.86 [3.14, 4.58] 1.21 [0.65, 1.76] 0.39 [-0.00, 0.79] 6.77 [6.04, 7.49] 3.05 [0.36, 5.73] 2.27 [0.95, 3.60]	Std. Mean Difference IV. Random, 95% CI

(A) Subgroup analysis by country demonstrating the association between serum MMP-9 level and epilepsy. (B) Subgroup analysis by age category demonstrating the association between serum MMP-9 level and epilepsy. (C) Subgroup analysis by seizure types demonstrating the association between serum MMP-9 level and epilepsy. (D) Subgroup analysis by female duration of seizures demonstrating the association between serum MMP-9 level and epilepsy. (E) Subgroup analysis by male duration of seizures demonstrating the association between serum MMP-9 level and epilepsy. (F) Subgroup analysis by male duration of seizures demonstrating the association between serum MMP-9 level and epilepsy.

Author contributions

QW: Writing – original draft, Writing – review & editing. ZL: Writing – review & editing. CY: Writing – review & editing. JL: Data curation, Investigation, Writing – review & editing. JC: Data curation, Investigation, Writing – review & editing. LD: Methodology, Supervision, Writing – review & editing. supported by grants from the National Natural Science Foundation of China (82360875), the Guangxi Science and Technology Base and Talent Special Project (GUI KE AD22035168), the National Natural Science Foundation of China (81960858), and Innovation Project of Guangxi Graduate Education of GXUCM (YCBXJ2023005), without any specific funding from public, commercial, or nonprofit sectors.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This study was

Funding

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated

References

Bronisz, E., Cudna, A., Wierzbicka, A., Jopowicz, A., and Kurkowska-Jastrzebska, I. (2018) *Correlation of blood-brain barrier markers with disease activity, Epilepsia*. S57. Wiley: Hoboken, NJ.

Bronisz, E., Cudna, A., Wierzbicka, A., and Kurkowska-Jastrzębska, I. (2022). Serum proteins associated with blood-brain barrier as potential biomarkers for seizure prediction. *Int. J. Mol. Sci.* 23:14712. doi: 10.3390/ijms232314712

Bronisz, E., Cudna, A., Wierzbicka, A., and Kurkowska-Jastrzębska, I. (2023). Bloodbrain barrier-associated proteins are elevated in serum of epilepsy patients. *Cell* 12:368. doi: 10.3390/cells12030368

Bronisz, E., and Kurkowska-Jastrzębska, I. (2016). Matrix metalloproteinase 9 in epilepsy: the role of neuroinflammation in seizure development. *Mediat. Inflamm.* 2016, 1–14. doi: 10.1155/2016/7369020

Chen, Y., Chen, X., and Liang, Y. (2023). Metaanalysis of HMGB1 levels in the cerebrospinal fluid and serum of patients with epilepsy. *J. Neurol. Sci.* 44, 2329–2337. doi: 10.1007/s10072-023-06720-0

Cudna, A., Bronisz, E., Jopowicz, A., and Kurkowska-Jastrzębska, I. (2023). Changes in serum blood-brain barrier markers after bilateral tonic-clonic seizures. *Seizure-Eur. J. Epilep.* 106, 129–137. doi: 10.1016/j.seizure.2023.02.012

Cudna, A., Jopowicz, A., Mierzejewski, P., and Kurkowska-Jastrzębska, I. (2017). Serum metalloproteinase 9 levels increase after generalized tonic-clonic seizures. *Epilepsy Res.* 129, 33–36. doi: 10.1016/j.eplepsyres.2016.11.006

Diao, L., Haichun, Y., Zheng, J., ZirongChen, D. H., and Lu, Y. (2015). Abnormalities of the uncinate fasciculus correlate with executive dysfunction in patients with left temporal lobe epilepsy. *Magn. Reson. Imaging* 33, 544–550. doi: 10.1016/j. mri.2015.02.011

Dong, X., Song, Y. N., Liu, W. G., and Guo, X. L. (2009). Mmp-9, a potential target for cerebral ischemic treatment. *Curr. Neuropharmacol.* 7, 269–275. doi: 10.2174/157015909790031157

El Moneam Abdallah, N. A., Kandeel, W. A., Elmalt, H. A., and Elabdeen, M. S. Z. (2019). Evaluation of serum matrix metalloproteinase-9 as a potential biomarker for diagnosis of epilepsy in children. *Sci. J. Al-Azhar Med. Faculty Girls* 3, 587–595. doi: 10.4103/sjamf_sjamf_57_19

Fabene, P. F., Laudanna, C., and Constantin, G. (2013). Leukocyte trafficking mechanisms in epilepsy. *Mol. Immunol.* 55, 100–104. doi: 10.1016/j.molimm.2012.12.009

Fabene, P. F., Mora, G. N., Martinello, M., Rossi, B., Ottoboni, L., Bach, S., et al. (2008). A role for leukocyte-endothelial adhesion mechanisms in epilepsy. *Nat. Med.* 14, 1377–1383. doi: 10.1038/nm.1878

Frigerio, F., Frasca, A., Weissberg, I., Parrella, S., Friedman, A., Vezzani, A., et al. (2012). Long-lasting pro-ictogenic effects induced in vivo by rat brain exposure to serum albumin in the absence of concomitant pathology. *Epilepsia* 53, 1887–1897. doi: 10.1111/j.1528-1167.2012.03666.x

GBD 2015 Neurological Disorders Collaborator Group (2017). Global, regional, and national burden of neurological disorders during 1990-2015:a systematic analysis for the global burden of disease study 2015. *Lancet Neurol.* 16, 877–897. doi: 10.1016/S1474-4422(17)30299-5

Golyala, A., and Kwan, P. (2017). Drug development for refractory epilepsy: the past 25 years and beyond. *Seizure* 44, 147–156. doi: 10.1016/j.seizure.2016.11.022

Hirose, G. (2013). An overview of epilepsy: its history, classification, pathophysiology and management. *Brain Nerve* 65, 509–520.

Huang, Q., Liu, J., Shi, Z., and Zhu, X. (2020). Correlation of MMP-9 and HMGB1 expression with the cognitive function in patients with epilepsy and factors affecting the prognosis. *Cell. Mol. Biol.* 66, 39–47. doi: 10.14715/cmb/2020.66.3.6

Konopka, A., Grajkowska, W., Ziemiańska, K., Roszkowski, M., Daszkiewicz, P., Rysz, A., et al. (2013). Matrix metalloproteinase-9 (MMP-9) in human intractable epilepsy caused by focal cortical dysplasia. *Epilepsy Res.* 104, 45–58. doi: 10.1016/j. eplepsyres.2012.09.018

Kwan, P., Arzimanoglou, A., Berg, A. T., Brodie, M. J., Allen Hauser, W., Mathern, G., et al. (2010). Definition of drug resistant epilepsy: consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. *Epilepsia* 51, 1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x

Li, X. L., Wang, S., Tang, C. Y., Ma, H. W., Cheng, Z. Z., Zhao, M., et al. (2022). Translocation of high mobility group Box1 from the nucleus to the cytoplasm in organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

depressed patients with epilepsy. ASN Neuro 14:17590914221136662. doi: 10.1177/17590914221136662

Li, Y., Wang, Z., Zhang, B., Zhe, X., Wang, M., Shi, S., et al. (2013). Disruption of the blood-brain barrier after generalized tonic-clonic seizures correlates with cerebrospinal fluid MMP-9 levels. *J. Neuroinflammation* 10:80. doi: 10.1186/1742-2094-10-80

Li, N., Xiang, L., Qinghua, T., and Hao, W. (2020). Correlation of serum matrix metalloproteinase-9, tumor necrosis factor- α and interferon- γ levels with electroencephalogram of children with epilepsy. *Chin. Med. Front. J.* 12, 90–94.

Maroso, M., Balosso, S., Ravizza, T., Liu, J., Aronica, E., Iyer, A. M., et al. (2010). Tolllike receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. *Nat. Med.* 16, 413–419. doi: 10.1038/nm.2127

Meguid, N. A., Samir, H., Bjørklund, G., Anwar, M., Hashish, A., Koura, F., et al. (2018). Altered S100 calcium-binding protein B and matrix metallopeptidase 9 as biomarkers of mesial temporal lobe epilepsy with hippocampus sclerosis. *J. Mol. Neurosci.* 66, 482–491. doi: 10.1007/s12031-018-1164-5

Michaluk, P., and Kaczmarek, L. (2007). Matrix metalloproteinase-9 in glutamatedependent adult brain function and dysfunction. *Cell Death Differ*. 14, 1255–1258. doi: 10.1038/sj.cdd.4402141

Pijet, B., Stefaniuk, M., Kostrzewska-Ksiezyk, A., Tsilibary, P.-E., Tzinia, A., and Kaczmarek, L. (2018). Elevation of MMP-9 levels promotes Epileptogenesis after traumatic brain injury. *Mol. Neurobiol.* 55, 9294–9306. doi: 10.1007/s12035-018-1061-5

Ragin, A. B., Wu, Y., Ochs, R., Scheidegger, R., Cohen, B. A., McArthur, J. C., et al. (2009). Serum matrix metalloproteinase levels correlate with brain injury in human immunodeficiency virus infection. *J. Neurovirol.* 15, 275–281. doi: 10.1080/13550280902913271

Rempe, R. G., Hartz, A. M. S., Soldner, E. L. B., Sokola, B. S., Alluri, S. R., Abner, E. L., et al. (2018). Matrix metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. *J. Neurosci.* 38, 4301–4315. doi: 10.1523/JNEUROSCI.2751-17.2018

Stang, A. (2010). Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. *Eur. J. Epidemiol.* 25, 603–605. doi: 10.1007/s10654-010-9491-z

Suenaga, N., Ichiyama, T., Kubota, M., Isumi, H., Tohyama, J., and Furukawa, S. (2008). Roles of matrix metalloproteinase-9 and tissue inhibitors of metalloproteinases 1 in acute encephalopathy following prolonged febrile seizures. *J. Neurol. Sci.* 266, 126–130. doi: 10.1016/j.jns.2007.09.011

Swann, J. W., and Hablitz, J. J. (2000). Cellular abnormalities and synaptic plasticity in seizure disorders of the immature nervous system. *Ment. Retard. Dev. Disabil. Res. Rev.* 6, 258–267. doi: 10.1002/1098-2779(2000)6:4<258::AID-MRDD5>3.0.CO;2-H

Tao, H., Gong, Y., Yu, Q., Zhou, H., and Liu, Y. (2020). Elevated serum matrix Metalloproteinase-9, Interleukin-6, hypersensitive C-reactive protein, and homocysteine levels in patients with epilepsy. *J. Interf Cytok Res.* 40, 152–158. doi: 10.1089/jir.2019.0137

Vezzani, A., Balosso, S., and Ravizza, T. (2008). The role of cytokines in the pathophysiology of epilepsy. *Brain Behav. Immun.* 22, 797-803. doi: 10.1016/j. bbi.2008.03.009

Wang, S. Correlation between serum MMP-9 level and cognitive function in patients with epilepsy. Hebei: Hebei Medical University. (2019).

Wang, S., Guan, Y., and Li, T. (2021). The potential therapeutic role of the HMGB1-TLR pathway in epilepsy. *Curr. Drug Targets* 22, 171–182. doi: 10.217 4/1389450121999200729150443

Yin, P., Yang, L., Zhou, H. Y., and Sun, R. P. (2011). Matrix metalloproteinase-9 may be a potential therapeutic target in epilepsy. *Med. Hypotheses* 76, 184–186. doi: 10.1016/j. mehy.2010.09.013

Zhang, M. Study on the correlation between MMP-9, TNF- α , IL-6 in serum and EEG of epileptic children and its significance. Zhengzhou: Zhengzhou University. (2019).

Zhang, C., and Hao, Y. (2009). Dynamic changes and significance of serum matrix metalloproteinase-9 levels in children with epilepsy. *Heilongjiang Med. Sci.* 32, 34–35.

Zhang, Q., Wang, X., Ding, J., Peng, W., and Fan, F. Dynamic changes of serum MMP-9 in acute stage of GTC seizure in epileptic patients and its relationship with seizure severity preliminary study. Proceedings of the 5th CAAE International Epilepsy Forum, China Anti-Epilepsy Association. (2013).

Zhen, H. (2014). Epidemiologic study of epilepsy. Chin. J. Modern Neurol. Dis. 14:919.