69 research outputs found

    Accelerated surgery versus standard care in hip fracture (HIP ATTACK): an international, randomised, controlled trial

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Identification of Key Features of CNS Drugs Based on SVM and Greedy Algorithm

    Full text link
    Introduction: The research and development of drugs, related to the central nervous system (CNS) diseases is a long and arduous process with high cost, long cycle and low success rate. Identification of key features based on available CNS drugs is of great significance for the discovery of new drugs. Methods: In this paper, based on the PaDEL descriptors of CNS drugs and non-CNS drugs, a support vector machine (SVM) model was constructed to identify the key features of CNS drugs. Firstly, the random forest algorithm was used to rank descriptors according to the feature significance that contributes to the identification of CNS drugs. Then, a reliable SVM model was constructed, and the optimal combination of descriptors was determined based on greedy algorithm and recursive feature elimination method. Results: It was found, based on the optimal combination of 40 descriptors, the prediction accuracy of CNS drugs and non-CNS drugs reached 94.2% and 94.4% respectively. Conclusion: nF11HeteroRing, AATSC3v, SpMin6_Bhi, maxdssC, AATS4v, E1v, E3e, GATS5s, minsOH and minHBint4 are the key features to distinguish between CNS drugs and non-CNS drugs. </jats:sec

    Probing the Relation Between Community Evolution in Dynamic Residue Interaction Networks and Xylanase Thermostability

    No full text

    The Quantitative Structure-Activity Relationships between GABAA Receptor and Ligands based on Binding Interface Characteristic

    Full text link
    Background: Quantitative Structure Activity Relationship (QSAR) methods based on machine learning play a vital role in predicting biological effect. Objective: Considering the characteristics of the binding interface between ligands and the inhibitory neurotransmitter Gamma Aminobutyric Acid A(GABAA) receptor, we built a QSAR model of ligands that bind to the human GABAA receptor. Method: After feature selection with Mean Decrease Impurity, we selected 53 from 1,286 docked ligand molecular descriptors. Three QSAR models are built using gradient boosting regression tree algorithm based on the different combinations of docked ligand molecular descriptors and ligand-receptor interaction characteristics. Results: The features of the optimal QSAR model contain both the docked ligand molecular descriptors and ligand-receptor interaction characteristics. The Leave-One-Out-Cross-Validation (Q2 LOO) of the optimal QSAR model is 0.8974, the Coefficient of Determination (R2) for the testing set is 0.9261, the Mean Square Error (MSE) is 0.1862. We also used this model to predict the pIC50 of two new ligands, the differences between the predicted and experimental pIC50 are -0.02 and 0.03 respectively. Conclusion : We found the BELm2, BELe2, MATS1m, X5v, Mor08v, and Mor29m are crucial features, which can help to build the QSAR model more accurately. </jats:sec

    Thermostability of Lipase A and Dynamic Communication Based on Residue Interaction Network

    Full text link
    Objective: Dynamic communication caused by mutation affects protein stability. The main objective of this study is to explore how mutations affect communication and to provide further insight into the relationship between heat resistance and signal propagation of Bacillus subtilis lipase (Lip A). Methods: The relationship between dynamic communication and Lip A thermostability is studied by long-time MD simulation and residue interaction network. The Dijkstra algorithm is used to get the shortest path of each residue pair. Subsequently, time-series frequent paths and spatio-temporal frequent paths are mined through an Apriori-like algorithm. Results: Time-series frequent paths show that the communication between residue pairs, both in wild-type lipase (WTL) and mutant 6B, becomes chaotic with an increase in temperature; however, more residues in 6B can maintain stable communication at high temperature, which may be associated with the structural rigidity. Furthermore, spatio-temporal frequent paths reflect the interactions among secondary structures. For WTL at 300K, β7, αC, αB, the longest loop, αA and αF contact frequently. The 310-helix between β3 and αA is penetrated by spatio-temporal frequent paths. At 400K, only αC can be frequently transmitted. For 6B, when at 300K, αA and αF are in more tight contact by spatio-temporal frequent paths though I157M and N166Y. Moreover, the rigidity of the active site His156 and the C-terminal of Lip A are increased, as reflected by the spatio-temporal frequent paths. At 400K, αA and αF, 310-helix between β3 and αA, the longest loop, and the loop where the active site Asp133 is located can still maintain stable communication. Conclusion: From the perspective of residue dynamic communication, it is obviously found that mutations cause changes in interactions between secondary structures and enhance the rigidity of the structure, contributing to the thermal stability and functional activity of 6B. </jats:sec

    Probing the Relation Between Community Evolution in Dynamic Residue Interaction Networks and Xylanase Thermostability

    Full text link
    corecore