236 research outputs found
The Complexity of the Simplex Method
The simplex method is a well-studied and widely-used pivoting method for
solving linear programs. When Dantzig originally formulated the simplex method,
he gave a natural pivot rule that pivots into the basis a variable with the
most violated reduced cost. In their seminal work, Klee and Minty showed that
this pivot rule takes exponential time in the worst case. We prove two main
results on the simplex method. Firstly, we show that it is PSPACE-complete to
find the solution that is computed by the simplex method using Dantzig's pivot
rule. Secondly, we prove that deciding whether Dantzig's rule ever chooses a
specific variable to enter the basis is PSPACE-complete. We use the known
connection between Markov decision processes (MDPs) and linear programming, and
an equivalence between Dantzig's pivot rule and a natural variant of policy
iteration for average-reward MDPs. We construct MDPs and show
PSPACE-completeness results for single-switch policy iteration, which in turn
imply our main results for the simplex method
On the Impact of Fair Best Response Dynamics
In this work we completely characterize how the frequency with which each
player participates in the game dynamics affects the possibility of reaching
efficient states, i.e., states with an approximation ratio within a constant
factor from the price of anarchy, within a polynomially bounded number of best
responses. We focus on the well known class of congestion games and we show
that, if each player is allowed to play at least once and at most times
any best responses, states with approximation ratio times the
price of anarchy are reached after best
responses, and that such a bound is essentially tight also after exponentially
many ones. One important consequence of our result is that the fairness among
players is a necessary and sufficient condition for guaranteeing a fast
convergence to efficient states. This answers the important question of the
maximum order of needed to fast obtain efficient states, left open by
[9,10] and [3], in which fast convergence for constant and very slow
convergence for have been shown, respectively. Finally, we show
that the structure of the game implicitly affects its performances. In
particular, we show that in the symmetric setting, in which all players share
the same set of strategies, the game always converges to an efficient state
after a polynomial number of best responses, regardless of the frequency each
player moves with
Sufficient Conditions for Tuza's Conjecture on Packing and Covering Triangles
Given a simple graph , a subset of is called a triangle cover if
it intersects each triangle of . Let and denote the
maximum number of pairwise edge-disjoint triangles in and the minimum
cardinality of a triangle cover of , respectively. Tuza conjectured in 1981
that holds for every graph . In this paper, using a
hypergraph approach, we design polynomial-time combinatorial algorithms for
finding small triangle covers. These algorithms imply new sufficient conditions
for Tuza's conjecture on covering and packing triangles. More precisely,
suppose that the set of triangles covers all edges in . We
show that a triangle cover of with cardinality at most can be
found in polynomial time if one of the following conditions is satisfied: (i)
, (ii) , (iii)
.
Keywords: Triangle cover, Triangle packing, Linear 3-uniform hypergraphs,
Combinatorial algorithm
Efficient Equilibria in Polymatrix Coordination Games
We consider polymatrix coordination games with individual preferences where
every player corresponds to a node in a graph who plays with each neighbor a
separate bimatrix game with non-negative symmetric payoffs. In this paper, we
study -approximate -equilibria of these games, i.e., outcomes where
no group of at most players can deviate such that each member increases his
payoff by at least a factor . We prove that for these
games have the finite coalitional improvement property (and thus
-approximate -equilibria exist), while for this
property does not hold. Further, we derive an almost tight bound of
on the price of anarchy, where is the number of
players; in particular, it scales from unbounded for pure Nash equilibria ( to for strong equilibria (). We also settle the complexity
of several problems related to the verification and existence of these
equilibria. Finally, we investigate natural means to reduce the inefficiency of
Nash equilibria. Most promisingly, we show that by fixing the strategies of
players the price of anarchy can be reduced to (and this bound is tight)
Learning the Designer's Preferences to Drive Evolution
This paper presents the Designer Preference Model, a data-driven solution
that pursues to learn from user generated data in a Quality-Diversity
Mixed-Initiative Co-Creativity (QD MI-CC) tool, with the aims of modelling the
user's design style to better assess the tool's procedurally generated content
with respect to that user's preferences. Through this approach, we aim for
increasing the user's agency over the generated content in a way that neither
stalls the user-tool reciprocal stimuli loop nor fatigues the user with
periodical suggestion handpicking. We describe the details of this novel
solution, as well as its implementation in the MI-CC tool the Evolutionary
Dungeon Designer. We present and discuss our findings out of the initial tests
carried out, spotting the open challenges for this combined line of research
that integrates MI-CC with Procedural Content Generation through Machine
Learning.Comment: 16 pages, Accepted and to appear in proceedings of the 23rd European
Conference on the Applications of Evolutionary and bio-inspired Computation,
EvoApplications 202
User Modelling and Adaptive, Natural Interaction for Conflict Resolution
Confronting conflicts and coping with them is part of social life, since conflicts seem to arise in almost every context and developmental stage of human life. The personal and collective gains that follow conflict resolution have motivated scholars across many research fields to advocate the use of pro-social mechanisms for resolution. The Siren serious game aims to support teachers' role to educate young people on how to resolve conflicts, by employing user- and cultural adaptivity and affective, non-verbal interaction to provide interesting and relevant conflict scenarios and resolution approaches
Combinatorial Properties of Triangle-Free Rectangle Arrangements and the Squarability Problem
We consider arrangements of axis-aligned rectangles in the plane. A geometric
arrangement specifies the coordinates of all rectangles, while a combinatorial
arrangement specifies only the respective intersection type in which each pair
of rectangles intersects. First, we investigate combinatorial contact
arrangements, i.e., arrangements of interior-disjoint rectangles, with a
triangle-free intersection graph. We show that such rectangle arrangements are
in bijection with the 4-orientations of an underlying planar multigraph and
prove that there is a corresponding geometric rectangle contact arrangement.
Moreover, we prove that every triangle-free planar graph is the contact graph
of such an arrangement. Secondly, we introduce the question whether a given
rectangle arrangement has a combinatorially equivalent square arrangement. In
addition to some necessary conditions and counterexamples, we show that
rectangle arrangements pierced by a horizontal line are squarable under certain
sufficient conditions.Comment: 15 pages, 13 figures, extended version of a paper to appear at the
International Symposium on Graph Drawing and Network Visualization (GD) 201
b-coloring is NP-hard on co-bipartite graphs and polytime solvable on tree-cographs
A b-coloring of a graph is a proper coloring such that every color class
contains a vertex that is adjacent to all other color classes. The b-chromatic
number of a graph G, denoted by \chi_b(G), is the maximum number t such that G
admits a b-coloring with t colors. A graph G is called b-continuous if it
admits a b-coloring with t colors, for every t = \chi(G),\ldots,\chi_b(G), and
b-monotonic if \chi_b(H_1) \geq \chi_b(H_2) for every induced subgraph H_1 of
G, and every induced subgraph H_2 of H_1.
We investigate the b-chromatic number of graphs with stability number two.
These are exactly the complements of triangle-free graphs, thus including all
complements of bipartite graphs. The main results of this work are the
following:
- We characterize the b-colorings of a graph with stability number two in
terms of matchings with no augmenting paths of length one or three. We derive
that graphs with stability number two are b-continuous and b-monotonic.
- We prove that it is NP-complete to decide whether the b-chromatic number of
co-bipartite graph is at most a given threshold.
- We describe a polynomial time dynamic programming algorithm to compute the
b-chromatic number of co-trees.
- Extending several previous results, we show that there is a polynomial time
dynamic programming algorithm for computing the b-chromatic number of
tree-cographs. Moreover, we show that tree-cographs are b-continuous and
b-monotonic
Mixed Linear Layouts of Planar Graphs
A -stack (respectively, -queue) layout of a graph consists of a total
order of the vertices, and a partition of the edges into sets of
non-crossing (non-nested) edges with respect to the vertex ordering. In 1992,
Heath and Rosenberg conjectured that every planar graph admits a mixed
-stack -queue layout in which every edge is assigned to a stack or to a
queue that use a common vertex ordering.
We disprove this conjecture by providing a planar graph that does not have
such a mixed layout. In addition, we study mixed layouts of graph subdivisions,
and show that every planar graph has a mixed subdivision with one division
vertex per edge.Comment: Appears in the Proceedings of the 25th International Symposium on
Graph Drawing and Network Visualization (GD 2017
- …