112 research outputs found

    Research and experimental verification on low-frequency long-range underwater sound propagation dispersion characteristics under dual-channel sound speed profiles in the Chukchi Plateau

    Full text link
    The dual-channel sound speed profiles of the Chukchi Plateau and the Canadian Basin have become current research hotspots due to their excellent low-frequency sound signal propagation ability. Previous research has mainly focused on using sound propagation theory to explain the changes in sound signal energy. This article is mainly based on the theory of normal modes to study the fine structure of low-frequency wide-band sound propagation dispersion under dual-channel sound speed profiles. In this paper, the problem of the intersection of normal mode dispersion curves caused by the dual-channel sound speed profile (SSP) has been explained, the blocking effect of seabed terrain changes on dispersion structures has been analyzed, and the normal modes has been separated by using modified warping operator. The above research results have been verified through a long-range seismic exploration experiment at the Chukchi Plateau. At the same time, based on the acoustic signal characteristics in this environment, two methods for estimating the distance of sound sources have been proposed, and the experiment data at sea has also verified these two methods.Comment: 30 pages, 18 figure

    Research and experimental verification on low-frequency long-range sound propagation characteristics under ice-covered and range-dependent marine environment in the Arctic

    Full text link
    At present, research on sound propagation under the Arctic ice mainly focuses on modeling and experimental verification of sound propagation under sea ice cover and unique sound velocity profiles. Among them, the main research object of concern is sound transmission loss, and this article will delve into the time-domain waveform and fine dispersion structure of low-frequency broadband acoustic signals. Firstly, based on the theory of normal modes, this article derives the horizontal wavenumber expression and warping transformation operator for refractive normal modes in the Arctic deep-sea environment. Subsequently, based on measured ocean environmental parameters and sound field simulation calculations, this article studied the general laws of low-frequency long-range sound propagation signals in the Arctic deep-sea environment, and elucidated the impact mechanism of environmental factors such as seabed terrain changes, horizontal changes in sound velocity profiles (SSPs), and sea ice cover on low-frequency long-range sound propagation in the Arctic. This article validates the above research viewpoint through a sound propagation experiment conducted in the Arctic with a propagation distance exceeding 1000km. The marine environment of this experiment has obvious horizontal variation characteristics. At the same time, this article takes the lead in utilizing the warping transformation of refractive normal waves in the Arctic waters to achieve single hydrophone based separation of normal waves and extraction of dispersion structures, which is conducive to future research on underwater sound source localization and environmental parameter inversion based on dispersion structures.Comment: 46 pages, 35 figure

    Boron nitride nanotube-based amphiphilic hybrid nanomaterials for superior encapsulation of hydrophobic cargos

    Get PDF
    We report an organic-inorganic hybrid core-shell nanomaterial obtained by conjugation of an amphiphilic monomethoxy-poly(ethylene glycol)-b-poly(epsilon-caprolactone) diblock copolymer to hydroxylated boron nitride nanotubes (BNNTs). The extent of copolymer grafting reached 64% w/w, an exceptionally high value. The hybrid materials exhibit excellent physical stability in water and an outstanding loading capacity (31.3% w/w) for curcumin, a hydrophobic drug. Moreover, they present good compatibility with the Caco2 cell line, a model of intestinal epithelium. Our findings demonstrate the potential of multifunctional hybrid BNNTs to serve as a platform for complex amphiphilic nanoparticle architectures with improved features. (c) 2017 Elsevier Ltd. All rights reserved.Peer reviewe

    Determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography

    Get PDF
    ObjectiveTo develop an analytical method for fast determination of banned pigment quinoline yellow in pastries by salting out assisted-high performance liquid chromatography.MethodsThe sample was extracted with 40% methanol-sodium chloride-water, precipitated with potassium ferrocyanide-zinc acetate solution, eluted with mobile phase of methanol-0.02 mol/L ammonium acetate solution, separated by X-Bridge C18 column v(150 mm×4.6 mm, 3.5 μm), and detected with diode -array detector by external standard method.ResultsThe method showed good linearity (r>0.999) in the range of 0.4-40.0 μg/mL. The limit of detection (S/N=3) was 1.25 mg/kg and the limit of quantification (S/N=10) was 5.0 mg/kg. The average recoveries of three different concentrations level at 5.0, 10.0 and 50.0 mg/kg ranged from 89.18% to 110.10%, with relative standard deviation in the range of 2.83%-8.65%.ConclusionThe method was convenient, accurate and reproducible, and it was suitable for qualitative and quantitative analysis of banned pigment quinoline yellow in pastries

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Construction of Green Power Development Evaluation System Based on TOPSIS Method

    No full text
    In this paper, the green development evaluation system and method which is useful in power grid were studied and established, and the indicators that affect the green development process of the power grid were analyzed and classified. In order to reflect the comprehensive indicators of the assessment indicators and their impact on the whole society, the system also includes indirect indicators of power generation enterprises, government and social organizations as the main body of implementation, as the expansion of the power grid’s green development. In the calculation period, the TOPSIS method was introduced for evaluating the results and indicators of different companies in two provinces. This research will provide an important reference for energy companies to improve the internal assessment methods for environmental protection and green development

    Effect of lycopene on titanium implant osseointegration in ovariectomized rats

    No full text
    Abstract Background Lycopene prevents bone loss in osteopenic models. However, the role of lycopene in the success rate of dental implants under osteopenic conditions remains unknown. The aim of this study was to evaluate whether lycopene prevents delayed implant osseointegration in an ovariectomized (OVX) rat model. Methods Thirty female Sprague-Dawley rats were randomly divided into the following groups: OVX with vehicle (OVX group), OVX with lycopene (OVX + lycopene group) and sham-operated with vehicle (sham group). Twelve weeks after ovariectomy or sham operation, titanium implants were placed into the distal metaphysis of the bilateral femurs of each rat. These rats were subsequently gavaged with lycopene (50 mg/kg/day) or vehicle. After 12 weeks of gavage, all rats were sacrificed, and specimens were harvested. Sample osseointegration was evaluated by biomechanical testing, 3D micro-computed tomography (micro-CT) analysis and histomorphometric analysis. Results Compared with the OVX group, the OVX + lycopene group showed a 69.3% increase in the maximum push-out force (p  0.05). Conclusions Lycopene improved implant osseointegration, fixation and bone formation under osteopenic conditions, suggesting that lycopene is a promising therapeutic agent to prevent delayed implant osseointegration and bone loss under osteopenic conditions
    corecore