12 research outputs found

    Text-to-3D with Classifier Score Distillation

    Full text link
    Text-to-3D generation has made remarkable progress recently, particularly with methods based on Score Distillation Sampling (SDS) that leverages pre-trained 2D diffusion models. While the usage of classifier-free guidance is well acknowledged to be crucial for successful optimization, it is considered an auxiliary trick rather than the most essential component. In this paper, we re-evaluate the role of classifier-free guidance in score distillation and discover a surprising finding: the guidance alone is enough for effective text-to-3D generation tasks. We name this method Classifier Score Distillation (CSD), which can be interpreted as using an implicit classification model for generation. This new perspective reveals new insights for understanding existing techniques. We validate the effectiveness of CSD across a variety of text-to-3D tasks including shape generation, texture synthesis, and shape editing, achieving results superior to those of state-of-the-art methods. Our project page is https://xinyu-andy.github.io/Classifier-Score-DistillationComment: Our project page is https://xinyu-andy.github.io/Classifier-Score-Distillatio

    Refined Vehicle-Bridge Interaction Analysis Using Incompatible Solid Finite Element for Evaluating Stresses and Impact Factors

    No full text
    The vehicle-bridge interaction can induce bridge vibration and consequently fatigue, durability deterioration, local damage, and even collapse of bridge structure. In this paper, a solid vehicle-bridge interaction (VBI) analysis method is developed to provide refined analysis on the bridge responses including displacement and local stress under vehicle loads. The incompatible solid finite element (FE) is introduced to model the bridge, where the element shear locking is alleviated by incompatible displacement modes without sacrificing the computational efficiency. Benchmark example shows the incompatible solid element has superior computational efficiency compared to the conventional solid element. By virtue of the mass-spring-damper vehicle model, the interaction between vehicle and bridge is simulated with point-to-point contact assumption and the coupled dynamic equations are solved via nonlinear iteration. A case study on a simply supported T-girder bridge is conducted to validate the developed solid VBI analysis method and then the dynamic impact factor (DIF) of the bridge is evaluated based on the computed stress results and compared to code values. Results show that the solid VBI analysis method yields more accurate time-history bridge responses including displacement and stress under moving vehicles than the grillage method despite higher computational cost. Particularly, it can simulate realistic stress distribution and concentration along any concerned sections as well as in local components, which can provide detail information on the bridge behavior under dynamic loads. On the other hand, the DIF based on the computed stress result generally agrees well with the code values except for heavy vehicles where the stress-based DIF is slightly higher than the value in Chinese code while lower than that of AASHTO, suggesting the value specified by Chinese code may underestimate the DIF of heavy vehicles in certain circumstances to which more attention should be paid

    Influence of Fluid Viscous Damper on the Dynamic Response of Suspension Bridge under Random Traffic Load

    No full text
    Fluid viscous dampers (FVDs) are widely used in long-span suspension bridges for earthquake resistance. To analyze efficiently the influences of FVDs on the dynamic response of a suspension bridge under high-intensity traffic flow, a bridge-vehicle coupling method optimized by isoparametric mapping and improved binary search in this work was first developed and validated. Afterwards, the traffic flow was simulated on the basis of monitored weigh-in-motion data. The dynamic responses of bridge were analyzed by the proposed method under different FVD parameters. Results showed that FVDs could positively affect bridge dynamic response under traffic flow. The maximum accumulative longitudinal girder displacement, longitudinal girder displacement, and longitudinal pylon acceleration decreased substantially, whereas the midspan girder bending moment, pylon bending moment, longitudinal pylon displacement, and suspender force were less affected. The control efficiency of maximum longitudinal girder displacement and accumulative girder displacement reached 33.67% and 57.71%, longitudinal pylon acceleration and girder bending moment reached 31.51% and 7.14%, and the pylon longitudinal displacement, pylon bending moment, and suspender force were less than 3%. The increased damping coefficient and decreased velocity exponent can reduce the bridge dynamic response. However, when the velocity exponent was 0.1, an excessive damping coefficient brought little improvement and may lead to high-intensity work under traffic flow, which will adversely affect component durability. The benefits of low velocity exponent also reduced when the damping coefficient was high enough, so if the velocity exponent has to be increased, the damping coefficient can be enlarged to fit with the velocity exponent. The installation of FVDs influences dynamic responses of bridge structures in daily operations and this issue warrants investigation. Thus, traffic load should be considered in FVD design because structural responses are perceptibly influenced by FVD parameters

    Corrosion Fatigue Degradation Characteristics of Galvanized and Galfan High-Strength Steel Wire

    No full text
    Cables are the main load-bearing components of a cable bridge and typically composed of high strength steel wires with a galvanized coating or Galfan coating. Galfan steel wire has recently started to be widely used because of its better corrosion resistance than galvanized steel wire. The corrosion characteristics of the coating and the difference in the corrosion fatigue process of the two types of steel wire are unclear. To further improve the service performance and maintenance of cable bridges, this study investigated the corrosion characteristics of galvanized steel wire and Galfan steel wire through accelerated corrosion tests and established a time-varying model of uniform corrosion and pitting corrosion of high-strength steel wire. Then, a long-span suspension bridge was taken as the research object, and the corrosion fatigue degradation of the two kinds of steel wire under a traffic load was analyzed on the basis of traffic monitoring data. The results showed that the uniform corrosion of the two types of steel wire conformed to an exponential development trend, the corrosion coefficient of galvanized steel wire conformed to the normal distribution, and the corrosion coefficient of Galfan steel wire conformed to the Cauchy distribution. The maximum pitting coefficient distribution of the two kinds of steel wire conformed to the generalized extreme value distribution. The location parameters and scale parameters of the two distributions showed an exponential downward trend with the increase of corrosion duration. When the traffic intensity was low, the corrosion characteristics of the steel wire was the main factor affecting its service life, and the average service life of Galfan steel wire was significantly higher than that of galvanized steel wire. Under a dense traffic flow, the service life of the steel wire was mainly controlled by the traffic load, and the service life of Galfan steel wire was slightly improved. Effective anti-corrosion measures are a key factor for improving the service life of steel wire

    Torque Density Improvement of Doubly Salient Electromagnetic Machine With Asymmetric Current Control

    No full text
    corecore