76 research outputs found

    Career preferences of graduating medical students in China: a nationwide cross-sectional study

    Get PDF
    Background: China faces major challenges in the distribution of health professionals with serious shortages in rural areas and in the development of Primary Care Providers (PCPs). This study investigates the career preferences of medical students in China and the impact of rural backgrounds on these preferences. Methods: Medical students in the final year of their program in 16 medical schools across China completed a 58-item survey that included questions regarding their demographic characteristics, attitudes toward practice in low resource areas, postgraduate planning, self-assessed competency, university facilities assessment, and financial situation. Descriptive calculation and Logit model were used for the analysis. Results: Completed surveys from 3020 students were included in the analysis. Upon graduation, 48.5 % of the medical students preferred to work in urban public hospitals and this percentage rose to 73.6 % when students were asked to state their anticipated preference five years after graduation. Students' top three ranked reasons for preferred careers were "good career prospects", "living close to parents/families", and "remuneration". Those who preferred to work in rural areas upon graduation were more likely to be those who lived in rural areas when 1-15 years old (beta = 2.05, p < 0.001), had high school in rural areas (beta = 1.73, p < 0.001), or had parents' place of current residence in rural areas (beta = 2.12, p < 0.001). Similar results were found for those students who preferred to work in PCPs. Conclusions: To address the serious shortages of health professionals in rural areas and PCPs, medical schools should consider strategies to recruit more medical applicants with rural backgrounds and to orient students to rural and primary care interests.SCI(E)[email protected]

    Multi-Effects Coupled Nanogenerators for Simultaneously Harvesting Solar, Thermal, and Mechanical Energies

    Get PDF
    As a result of the widespread use of small-scale and low-power electronic devices, the demand for micro-energy sources has increased, in particular the potential to harvest the wide variety of energy sources present in their surrounding environment. In this paper, a novel coupled nanogenerator that can realize energy harvesting for multiple energy sources is reported. Based on the unique electrical properties of ferroelectric Bi 0.5Na 0.5TiO 3 (BNT) materials, it is possible to combine a photovoltaic cell, pyroelectric nanogenerator, and triboelectric-piezoelectric nanogenerator in a single element to harvest light, heat, and mechanical energy simultaneously. To evaluate the effectiveness of coupling for different materials, a Yang coupling factor (k C,Q) is defined in terms of transferred charge, where BNT has the largest k C,Q of 1.29 during heating, indicating that BNT has the best coupling enhancement compared to common ferroelectric materials. This new criterion and novel device structure therefore provide a new basis for the future development of coupled nanogenerators which are capable of harvesting multiple sources of energy.</p

    Multi-Effects Coupled Nanogenerators for Simultaneously Harvesting Solar, Thermal, and Mechanical Energies

    Get PDF
    As a result of the widespread use of small-scale and low-power electronic devices, the demand for micro-energy sources has increased, in particular the potential to harvest the wide variety of energy sources present in their surrounding environment. In this paper, a novel coupled nanogenerator that can realize energy harvesting for multiple energy sources is reported. Based on the unique electrical properties of ferroelectric Bi 0.5Na 0.5TiO 3 (BNT) materials, it is possible to combine a photovoltaic cell, pyroelectric nanogenerator, and triboelectric-piezoelectric nanogenerator in a single element to harvest light, heat, and mechanical energy simultaneously. To evaluate the effectiveness of coupling for different materials, a Yang coupling factor (k C,Q) is defined in terms of transferred charge, where BNT has the largest k C,Q of 1.29 during heating, indicating that BNT has the best coupling enhancement compared to common ferroelectric materials. This new criterion and novel device structure therefore provide a new basis for the future development of coupled nanogenerators which are capable of harvesting multiple sources of energy.</p

    Self-Powered Stretchable Sensor Arrays Exhibiting Magnetoelasticity for Real-Time Human–Machine Interaction

    Get PDF
    Stretchable strain sensors are highly desirable for human motion monitoring, and can be used to build new forms of bionic robots. However, the current use of flexible strain gauges is hindered by the need for an external power supply, and the demand for long-term operation. Here, a new flexible self-powered strain sensor system based on an electromagnetic generator that possesses a high stretchability in excess of 150%, a short response time of 30 ms, and an excellent linearity (R2 &gt; 0.98), is presented. Based on this new form of sensor, a human–machine interaction system is designed to achieve remote control of a robot hand and vehicle using a human hand, which provides a new scheme for real-time gesture interaction.</p

    Biophysical and nutritional combination treatment for myosteatosis in patients with sarcopenia: a study protocol for single-blinded randomised controlled trial

    Get PDF
    Introduction Sarcopenia is characterised by age-related loss of skeletal muscle and function and is associated with risks of adverse outcomes. The prevalence of sarcopenia increases due to ageing population and effective interventions is in need. Previous studies showed that β-hydroxy β-methylbutyrate (HMB) supplement and vibration treatment (VT) enhanced muscle quality, while the coapplication of the two interventions had further improved muscle mass and function in sarcopenic mice model. This study aims to investigate the efficacy of this combination treatment in combating sarcopenia in older people. The findings of this study will demonstrate the effect of combination treatment as an alternative for managing sarcopenia. Methods and analysis In this single-blinded randomised controlled trial, subjects will be screened based on the Asian Working Group for Sarcopenia (AWGS) 2019 definition. 200 subjects who are aged 65 or above and identified sarcopenic according to the AWGS algorithm will be recruited. They will be randomised to one of the following four groups: (1) Control+ONS; (2) HMB+ONS; (3) VT+ONS and (4) HMB+VT + ONS, where ONS stands for oral nutritional supplement. ONS will be taken in the form of protein formular once/day; HMB supplements will be 3 g/day; VT (35 Hz, 0.3 g, where g=gravitational acceleration) will be received for 20 mins/day and at least 3 days/week. The primary outcome assessments are muscle strength and function. Subjects will be assessed at baseline, 3-month and 6-month post treatment. Ethics and dissemination This study was approved by Joint CUHK-NTEC (The Chinese University of Hong Kong and New Territories East Cluster) Clinical Research Management Office (Ref: CRE-2022.223-T) and conformed to the Declaration of Helsinki. Trial results will be published in peer-reviewed journals and disseminated at academic conferences

    Airborne observations reveal elevational gradient in tropical forest isoprene emissions

    Get PDF
    Isoprene dominates global non-methane volatile organic compound emissions, and impacts tropospheric chemistry by influencing oxidants and aerosols. Isoprene emission rates vary over several orders of magnitude for different plants, and characterizing this immense biological chemodiversity is a challenge for estimating isoprene emission from tropical forests. Here we present the isoprene emission estimates from aircraft eddy covariance measurements over the Amazonian forest. We report isoprene emission rates that are three times higher than satellite top-down estimates and 35% higher than model predictions. The results reveal strong correlations between observed isoprene emission rates and terrain elevations, which are confirmed by similar correlations between satellite-derived isoprene emissions and terrain elevations. We propose that the elevational gradient in the Amazonian forest isoprene emission capacity is determined by plant species distributions and can substantially explain isoprene emission variability in tropical forests, and use a model to demonstrate the resulting impacts on regional air quality

    Proceedings of Workshop on China Social Economics, Marketing and Policy of the Bamboo Sector, 16-18 June 1999, Beijing

    No full text
    Over the past few years, a number of Chinese researchers have collaborated with CIFOR and INBAR/IDRC in a systematic, two-phase socio-economic study of the bamboo sector in China. This proceedings contains a synthesis from the main research findings from research programs related to socioeconomics, marketing and policy in the bamboo sector of China. The current status and planning in the main bamboo - growing regions and industry systems are addressed. The studies cover strategic objectives, major projects, planning and actions, as well as problems and countermeasures to remedy them. The directions of development and prospects for sustainable development of the bamboo sector into the 21st century are considered
    • …
    corecore