22,365 research outputs found

    Real-time food intake classification and energy expenditure estimation on a mobile device

    Get PDF
    Ā© 2015 IEEE.Assessment of food intake has a wide range of applications in public health and life-style related chronic disease management. In this paper, we propose a real-time food recognition platform combined with daily activity and energy expenditure estimation. In the proposed method, food recognition is based on hierarchical classification using multiple visual cues, supported by efficient software implementation suitable for realtime mobile device execution. A Fischer Vector representation together with a set of linear classifiers are used to categorize food intake. Daily energy expenditure estimation is achieved by using the built-in inertial motion sensors of the mobile device. The performance of the vision-based food recognition algorithm is compared to the current state-of-the-art, showing improved accuracy and high computational efficiency suitable for realtime feedback. Detailed user studies have also been performed to demonstrate the practical value of the software environment

    A low-power opportunistic communication protocol for wearable applications

    Get PDF
    Ā© 2015 IEEE.Recent trends in wearable applications demand flexible architectures being able to monitor people while they move in free-living environments. Current solutions use either store-download-offline processing or simple communication schemes with real-time streaming of sensor data. This limits the applicability of wearable applications to controlled environments (e.g, clinics, homes, or laboratories), because they need to maintain connectivity with the base station throughout the monitoring process. In this paper, we present the design and implementation of an opportunistic communication framework that simplifies the general use of wearable devices in free-living environments. It relies on a low-power data collection protocol that allows the end user to opportunistically, yet seamlessly manage the transmission of sensor data. We validate the feasibility of the framework by demonstrating its use for swimming, where the normal wireless communication is constantly interfered by the environment

    Flow characteristics of various three-dimensional rounded contour bumps in a Mach 1.3 freestream

    Get PDF
    Streamwise and spanwise flow pattern over three rounded contour bumps with different flow control strategies employed have been experimentally investigated in a Mach 1.3 freestream. Surface oil flow visualisation, Schlieren photography and particle image velocimetry measurements were used for flow diagnostics. Experimental data showed that in a Mach 1.3 freestream over the baseline plain bump, significant flow separation appeared at the bump crest that led to the formation of a large wake region downstream. In addition, two large counter-rotating spanwise vortices were formed in the bump valley. It was observed that the use of the passive by-pass blowing jet in the bump valley showed no obvious effects in reducing the sizes of both the wake region and the spanwise vortices in the bump valley. In contrast, it was found that the size of the wake region and the spanwise vortices could be reduced by blowing sonic jet in the bump valley. This approach of flow control found to be the most effective when the total pressure of the blowing jet was 2 bar. It is deduced that the active blowing jet hindered the formation of the spanwise vortices in the bump valley as well as deflected the shear layer downwards so that a smaller re-circulating bubble was formed downstream of the bump crest

    Feature extraction from ear-worn sensor data for gait analysis

    Get PDF
    Gait analysis has a significant role in assessing human's walking pattern. It is generally used in sports science for understanding body mechanics, and it is also used to monitor patients' neuro-disorder related gait abnormalities. Traditional marker-based systems are well known for tracking gait parameters for gait analysis, however, it requires long set up time therefore very difficult to be applied in everyday realtime monitoring. Nowadays, there is ever growing of interest in developing portable devices and their supporting software with novel algorithms for gait pattern analysis. The aim of this research is to investigate the possibilities of novel gait pattern detection algorithms for accelerometer-based sensors. In particular, we have used e-AR sensor, an ear-worn sensor which registers body motion via its embedded 3-D accelerom-eter. Gait data was given semantic annotation using pressure mat as well as real-time video recording. Important time stamps within a gait cycle, which are essential for extracting meaningful gait parameters, were identified. Furthermore, advanced signal processing algorithm was applied to perform automatic feature extraction by signal decomposition and reconstruction. Analysis on real-word data has demonstrated the potential for an accelerometer-based sensor system and its ability to extract of meaningful gait parameters

    Thermal effect on current gains of an AlGaAs/GaAs heterostructure-emitter bipolar transistor

    Get PDF
    The temperature dependence of current gain was investigated for AlGaAs/GaAs heterostructure-emitter bipolar transistors (HEBT). The current gain of the HEBT was found much less sensitive to temperature variation than that of a heterojunction bipolar transistor. In particular, the HEBT current gain was more or less constant with increasing temperature at the high current regime, indicating great potentials for power applications.published_or_final_versio

    Recrystallized parylene as a mask for silicon chemical etching

    Get PDF
    This paper presents the first use of recrystallized parylene as masking material for silicon chemical etch. Recrystallized parylene was obtained by melting parylene C at 350Ā°C for 2 hours. The masking ability of recrystallized parylene was tested in HNA (hydrofluoric acid, nitric acid and acetic acid) solution of various ratios, KOH (potassium hydroxide) solution and TMAH (tetramethylammonium hydroxide) at different temperatures and concentrations. It is found that interface between parylene and the substrate can be attacked, which results in undercuts. Otherwise, recrystallized parylene exhibited good adhesion to silicon, complete protection of unexposed silicon and silicon etching rates comparable to literature data

    Rapid Determination of Receiver Sensitivity via Integral Search

    Get PDF
    Receiver sensitivity is a measure of the lowest signal strength that a receiver can detect. Receiver sensitivity is typically measured by linearly incrementing the received power level until a target packet error rate (PER) is reached. Linear search is slow and can occupy substantial test resources such as test stations and instruments. This disclosure describes techniques to rapidly determine the receiver sensitivity of a device-under-test (DUT) by learning the ensemble characteristics of devices under test, building a packet error rate (PER) model, performing limited-range measurements of the DUT, and using the PER model and the results of the measurements to predict the sensitivity of the DUT. By speeding up the determination of receiver sensitivity, the described techniques reduce test cycle times and enable improvement of the units per hour (UPH) of a factory, resulting in a lower cost of owning and operating test stations and instruments

    AI-based Approach for Estimating Degradation of Power Devices by Gate Waveform Monitoring

    Get PDF
    å­¦ä½ć®ēخ刄: äæ®å£«University of Tokyo(ę±äŗ¬å¤§å­¦

    Preparation of Amidoxime Polyacrylonitrile Chelating Nanofibers and Their Application for Adsorption of Metal Ions.

    Get PDF
    Polyacrylonitrile (PAN) nanofibers were prepared by electrospinning and they were modified with hydroxylamine to synthesize amidoxime polyacrylonitrile (AOPAN) chelating nanofibers, which were applied to adsorb copper and iron ions. The conversion of the nitrile group in PAN was calculated by the gravimetric method. The structure and surface morphology of the AOPAN nanofiber were characterized by a Fourier transform infrared spectrometer (FT-IR) and a scanning electron microscope (SEM), respectively. The adsorption abilities of Cu2+ and Fe3+ ions onto the AOPAN nanofiber mats were evaluated. FT-IR spectra showed nitrile groups in the PAN were partly converted into amidoxime groups. SEM examination demonstrated that there were no serious cracks or sign of degradation on the surface of the PAN nanofibers after chemical modification. The adsorption capacities of both copper and iron ions onto the AOPAN nanofiber mats were higher than those into the raw PAN nanofiber mats. The adsorption data of Cu2+ and Fe3+ ions fitted particularly well with the Langmuir isotherm. The maximal adsorption capacities of Cu2+ and Fe3+ ions were 215.18 and 221.37 mg/g, respectively
    • ā€¦
    corecore