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Abstract—Assessment of food intake has a wide range of
applications in public health and life-style related chronic dis-
ease management. In this paper, we propose a real-time food
recognition platform combined with daily activity and energy
expenditure estimation. In the proposed method, food recognition
is based on hierarchical classification using multiple visual cues,
supported by efficient software implementation suitable for real-
time mobile device execution. A Fischer Vector representation
together with a set of linear classifiers are used to categorize
food intake. Daily energy expenditure estimation is achieved by
using the built-in inertial motion sensors of the mobile device.
The performance of the vision-based food recognition algorithm
is compared to the current state-of-the-art, showing improved
accuracy and high computational efficiency suitable for real-
time feedback. Detailed user studies have also been performed to
demonstrate the practical value of the software environment.

I. INTRODUCTION

Obesity is a growing global health problem that has re-
ceived increasing attention in recent years. It has been esti-
mated that over 700 million people in the world are classified
as obese. In the UK, the obese population has more than trebled
in the last 25 years. Obesity is linked to many chronic diseases
including diabetes, heart diseases and cancer. Public health
systems are responding to this epidemic by promoting good
dietary intake and weight management. Traditional methods
for dietary assessments mostly rely on questionnaires or self-
reporting [1]. These methods are riddled with problems due
to underreporting and miscalculation of food consumption [2].
New approaches are required for objective assessment of free-
living food intake linking with daily activity patterns [3].
Increasing research in this direction is performed in recent
years [4]. For example, signal processing algorithms have been
developed to detect and characterize food intake by capturing
sound generated during chewing and swallowing of food using
an in-ear microphone [5], [6]. Wearable sensors have been used
for objective monitoring of ingestive behaviour [7]. Although
sensor based approaches are useful for detecting eating habits,
they are not suitable for detailed food classification. With
increasing sophistication of smart phones, recent approaches
have used vision-based methods for image classification [8].
Based on this idea, vision methods can be designed also
to solve the food recognition problem directly on the smart
phone. This also has the advantage of using the built-in
inertial sensors to monitor the activities of daily living, thus
providing detailed information in terms of energy expenditure.
Although many solutions exist for physical activity monitoring
(see e.g. [9] for a survey), limited work has attempted to

Fig. 1. Screenshot of the proposed mobile application for the food recognition
problem. The bar on the left shows the first 5 classes recognized by the system
for the current frame.

monitor the individual’s food intake at the same time. In
the rest of the paper, we will mainly focus on the technical
development of a vision-based food recognition system and its
detailed performance evaluation. We will also demonstrate the
deployment of the integrated system and illustrate the potential
value of the platform for population-based assessment.

II. RELATED WORK

Image-based classification is a popular topic in computer
vision. Local features such as the SIFT [10] or global features
such as GIST [11] are frequently used for this task. However,
for images of food, key point features or landmarks are either
not available or representative enough for reliable classifica-
tion [12]. For this reason, appearance and texture are often
used as a bag of features without explicit reference to spatial
distribution. Joutou et al. [13], for example, combined Bag-of-
SIFT with color histograms and Gabor filters to discriminate
between images of a dataset composed by 50 different food
categories. Matsuda et al. [14], [15] employed a Bag-of-SIFT
on spatial pyramid, histograms of gradient, color histogram
and Gabor filters to train a Multiple Kernel Learning based
on deformable part models. Zong et al. [16] employed a SIFT
detector and Local Binary Patterns (LBP) for encoding local
shape context. Concatenated features are used in many of these
methods by assuming the food classes are equally abundant
and complex in term of classification. This is problematic when
there are biased distributions. To overcome this problem, we
use a hierarchal representation that extracts a feature only if it



is relevant for the considered image. To ensure computational
efficiency and generalizability, local features are excluded. As
shown by Farinella et al. [17] and by Zong et al. [16], textures
are important for food classification and for this reason, the
Local Binary Pattern descriptor is used in our system. In
the proposed method, a hierarchical classification approach
is implemented. Key emphasis is placed on the real-time
performance of the system without sacrificing classification
accuracy.

III. PROPOSED APPROACH

The key processing flow of the proposed system is com-
puted as follows:

1) A user points a smart phone camera toward food items
before eating them.

2) Using the touchscreen display, the user refines the target
region, as illustrated in Fig. 1.

3) The system automatically processes the images and in
real-time lists the five most likely food categories recog-
nized.

The general workflow of the algorithm developed for food
classification is listed in Algorithm1. In essence, it takes as
input the frame I and the trained parameters described in Sec.
III-B and III-C. Starting from the first level of the hierarchy,
the algorithm proceeds until one of the classifiers associated
with a food class reaches a high value of confidence. At each
level i, a new set of local descriptors Vi, obtained exploiting the
feature Fi, are extracted from Frame I and the corresponding
Fisher Vector FVi is computed. The Fisher Vector outputs are
concatenated according to the features combination required
at the current level. Specifically, Idxi contains the indices
used to refer the features combination Fci involved at level
i. Finally for each class that is recognized from the current
combination (these classes are obtained by setting all the
elements in Idxi as an index for the vector Cl1, Cl2, ..., ClM ),
a linear classifier is deployed. If the classification confidence of
one of the classifiers reaches above a predefined threshold T ,
the class label associated with this classifier is returned. In the
following sub-sections, we will explain in more details about
the processing steps involved. Specifically, in section III-A we
describe the features employed in the system, in section III-B
the training process for generating the required classification
hierarchy, in section III-C the details of the Fisher Vector
representation and finally in section III-D the classification
steps .

A. Pool of available features

The Histogram of Oriented Gradients (HoG) proposed by
N. Dalal et al. [18] is used in this paper because of its
simplicity for real-time extraction on a smart phone. The
method counts the occurrences of gradient orientation in
localised portions of an image. The HOG is similar to the
edge orientation histograms, scale-invariant feature transform
descriptors, and shape contexts, but differs in the fact that it is
computed on a dense grid and uses overlapping local contrast
normalization for improved accuracy. As suggested in [19], we
extract HOG features in the following manner:

(a) The image is divided into overlapped windows of 16 ×
16 pixels, densely sampled.

Algorithm 1 Proposed food intake classification
Input:

I . Image
L . Number of levels in the hierarchy
M . Number of features combinations
P . Number of classes
F1, F2, ..., FN . Pool of features
Fc1, F c2, ..., F cM . Set of features combinations
Cl1, Cl2, ..., ClM . Set of classes recognized by each Fci
Idx1, Idx2, ...IdxL . Set of indices
Lc1, Lc2, ..., LcP . Classification models
Σ1,Σ2, ...,ΣL . Covariance matrix of the GMM
µ1, µ2, ..., µL . Mean vector of the GMM
w1, w2, ..., wL . Weight vector of the GMM
Lab1, Lab2, ...LabP . Class labels
T . Threshold

Output:
result . The label classification

1: result← −1;
2: for i=1 to L do
3: Vi ← extract local descriptors(Fi, I);
4: FVi ← extract fisher vector(wi, µi,Σi, Vi);
5: for Each index j in Idxi do
6: c← combine features(Fcj , FV1...FVi);
7: for Each class z in Clj do
8: s← compute linear classifier(Lcz, c);
9: if s > T then

10: result← Labz;
11: Exit();
12: end if
13: end for
14: end for
15: end for

(b) Each window is subdivided in 2 × 2 blocks, and the
gradient histogram regarding eight orientations from each
block is extracted. The final dimension of each Hog
features is 32 (4 blocks × 8 directions).

(c) PCA is applied to reduce the dimensions from 32 to 24.

For capturing texture features, the LBP descriptor proposed
by Ojala et al. [20] has been also used in our approach.
It has many attractive properties such as rotation invariance,
low computational burden, and robustness against monotonic
gray level transformation [21], [22]. In our approach, the LBP
feature is computed as follows:

(a) The image is divided in windows of 8 × 8 pixels.
(b) Each pixel in a window, is compared to each of its 8

neighbours (on its left-top, left-middle, left-bottom, right-
top, etc.), follow the pixels along a clockwise circle.

(c) Where the centre pixel’s value is greater than the neigh-
bour’s value, the bit at the current position is 1 otherwise
is 0. This gives an 8-digit binary number.

(d) Compute the histogram for the window; the frequency of
each ”number” occurring (i.e., each combination of which
pixels are smaller and which are greater than the centre)
gives the feature vector for the window.

(e) PCA is applied to reduce the dimension to 24.

The last feature that we decide to take into account is the color.
We extract the color features in the following manner:

(a) The image is divided in overlapped windows of 16 × 16



Fig. 2. Distribution of food classes recognized using the different features
combinations.

pixels, densely sampled with a step of 6 pixels.
(b) Each window is subdivided in 2 × 2 blocks.
(c) Mean and variance on each of the RGB channel are

extracted from the blocks. The final dimension of each
local feature vector related to the color is 24 (4 blocks ×
3 channels × 2 statistics).

(d) PCA is applied without dimension reduction with the aim
to improve the classification.

B. Hierarchy of features

The aim of the proposed hierarchy is to find, for each class,
the combination of features for optimal classification. The
hierarchy of features is generated using an off-line learning
process. Given a pool of N features, the total number of
possible features combinations is:

M =

N∑
i=1

C(N, i) =

N∑
i=1

N !

(i!× (N − i)!)
(1)

Each image of the training-set can be represented in
M different ways (one for each features combination). We
train a set of classifiers with a one-vs-rest strategy for all
the food categories P and for each of the proposed M
representations. The total number of classifiers generated is
P×M . All the images in the evaluation-set are classified using
the generated classifiers and finally the per-class accuracy is
analysed. Specifically, for each class, the feature combination
that produces the maximum per-class accuracy is selected
producing a histogram H containing the numbers of classes
better recognized by each feature combination. An example
of this histogram is shown in Fig. 2. The system creates the
final hierarchy by applying a greedy selection strategy on
this histogram. It selects first the feature that on its own is
capable to classify the maximum number of classes, then the
feature that combined with the previous one obtains the second
maximum number of classes. This process repeats for the rest
of the features. For each selected feature, the corresponding
class indices are saved in the array Idxi. For the histogram H
of Fig. 2, the system extracts, in order, the following features:
Color, HOG then LBP and the feature combinations generate
at each level are Idx1 = {1}, Idx2 = {4} and Idx3 =
{7, 6, 5, 3} with Fc1 = {Color}, F c2 = {Hog}, F c3 =
{LBP}, F c4 = {Color,Hog}, F c5 = {Hog, LBP}, F c6 =
{Color, LBP}, F c7 = {Color,Hog, LBP}. By using this
approach, simple classes are classified using just the feature in
the first level, instead more complex classes will be classified

using more features; eventually arriving at the leaf node of the
hierarchy.

C. Representation

As mention earlier, the Fisher Vector [23] is used for
representing a set of the local descriptors. Fisher Vector has
been introduced to combine the benefits of generative and
discriminative approaches. Let X = {xt, t = 1...T} be the
set of T local descriptors extracted from an image. We assume
that X can be modelled by a probability density function uλ
with parameters λ. X can be described by the gradient vector:

GXλ =
1

T
∇λ log uλ(X) (2)

This gradient vector can be classified by using any discrimi-
native classifier. A natural kernel on these gradients is:

K(X,Y ) = GX
′

λ F−1
λ GYλ (3)

where Fλ is the Fisher information matrix of uλ:

Fλ = Ex∼uλ
[∇λ log uλ(x)∇λ log uλ(x)

′
] (4)

Following [23] we used Fisher kernels on visual vocabularies,
where the vocabularies of visual words are represented a
Gaussian Mixture Model (GMM) as follows:

uλ(x) =

K∑
i=1

wiui(x) (5)

We denote λ = {wi, µi,Σi, i...K} where wi, µi and Σi are
respectively the mixture weight, mean vector and covariance
matrix of Gaussian ui. We assume that the covariance matrices
are diagonal and we denote by σ2

i the variance vector. The
GMM uλ is trained on a large number of images using Max-
imum Likelihood (ML) estimation. It is supposed to describe
the content of any image. We assume that xt’s are generated
independently by uλ. The probability that xt belongs to the
i-th component (estimation posterior probability) is given as
follows:

γt(i) =
wiui(xt)∑K
j=1 wjuj(xt)

(6)

We consider the gradient with respect to the mean and standard
deviation parameters that are defined as follows:

ΓXλ,i =
1

T
√
wi

∑
t = 1T γt(i)(

xt − µ
σi

) (7)

ΓXσ,i =
1

T
√

2wi

∑
t = 1T γt(i)[

(xt − µ)2

σ2
i

− 1] (8)

where the division between vectors is as a term-by-term
operation. The final gradient vector ΓXλ is the concatenation
of ΓXλ,i and ΓXσ,i vectors for i = 1...K and is therefore 2KD-
dimensional. Since its introduction, Fisher Vector has been
improved in different ways to enhance its performance. One
way is to apply an element-wise power normalization function,
f(z) = sign(z)|z|α where 0 ≤ α ≤ 1 is a parameter of
the normalization. Another is to apply a L2 normalization
on the Fisher Vector after applying the power normalization
function. Finally PCA can be applied to the features before
encoding them in the Fisher Vector. The PCA is crucial to
obtain good classification performance [24]. By applying these



(a) Example of classes selected from the proposed approach and recognized
using color information.

(b) Example of classes selected from the proposed approach and recognized
using edge information.

(c) Example of classes selected from the proposed approach and recognized
using a combination of color and texture information.

Fig. 3. Example of classes recognized by different cues

operations, Fisher Vector with a linear classifier obtain superi-
ority compared to the popular combination of bag-of-features
(BoF) and a non-linear SVM [24]. Moreover, since BoF
needs a larger-size dictionary to improve recognition accuracy,
(increasing computational cost for searching the nearest visual
code words from the visual word dictionary), Fisher Vector
is able to achieve a high recognition accuracy with even a
small-size dictionary, and low computational complexity [19].
This property is a significant advantage for mobile devices. In
the proposed approach, all the aforementioned improvements
are considered. Moreover, each feature vector is reduced to
24 dimensions by PCA and the number of Gaussian used to
compute the Fischer Vectors is 32.

D. Classification

Bag-of-features (BoF) with non-linear SVM is a common
strategy used for the problem of food recognition [17], [14],
[15], [13]. However, evaluation of non-linear SVM needs
kernel computation between all the support vectors and the
given feature vector, making it computationally complex. In
addition, all the support vectors needed to be available in

Fig. 4. Classification rate obtained when the images are represented using
the different features combinations.

Fig. 5. Classification rate withing the top-n candidates obtained by the
different approaches.

memory in order to compute the classification. For this reason,
linear SVM is used as it only requires to calculate inner
products, which is fast and has a low memory requirement. The
computational cost of a linear SVM is in fact O(N). We adopt
the one-vs-rest strategy for multi-class classification trained
off-line with LIB-LINEAR [25]. For each class, we extract
the best features combination (as described in section III-B)
and then we train the linear classifiers by using all the image
features in the corresponding category as positive samples and
the remaining image features as negative samples.

IV. EXPERIMENTS AND RESULTS

A. Classification Accuracy

In this section, we describe the experiments carried out
in order to demonstrate the practical value of our method.
In our experiments, we used the dataset ”UEC-FOOD100”
containing 100 food categories with more than 100 images
per category. All the food items are marked with bounding
boxes. Following the same protocol described in [19], we first
extract the sub-region contained the food portion (through the
bounding boxes marks) and then apply the food classification
algorithm. The total number of food images in the dataset
is 12,905. Moreover, we set the validation data and the test
data for each category as 20 images while the rest of images
are used for training the system. A cross-validation with five
folders randomly selected is performed for each experiment.
We used a Samsung Galaxy S5 (Quad Core with 2.5GHz and



Fig. 6. Outputs obtained by integrating activity recognition with daily food
intake recognition.

2GB of Memory) for measuring the processing time of the food
recognition algorithm. Fig. 4 demonstrates the classification
accuracy when the images are represented using the different
features combinations. For food recognition, unsurprisingly,
color is one of the most important visual cue. Fig. 3(a)
illustrates some of the classes that are recognized by using
this feature. Fig. 3(b) shows some of the classes that can be
recognized using the edge information (HOG features) and in
Fig. 3(c) those by using a combination of textures and colors.
It is evident that in the first case, the system selects the classes
that have a discriminative color pattern (like ”Sauteed spinach”
where the green is the predominant color or ”Shrimp with
chill source” where the red is the predominant color). In the
second case, the classes that have discriminative edge patterns
(like ”Sandwich” with strong horizontal and oblique edges
or ”Cutlet curry” with oblique edges caused by the cuts) are
determined. From the results in Fig. 3(a), we can also see that
the best classification accuracy is obtained when the 3 features
are always used in the system. However, using the proposed
hierarchy, the accuracy is only reduced by 0.5% with a system
32% faster (see Table I). In Fig. 5, we show the classification
accuracies achieved by the different approaches. It can be seen
that our approach outperformed the classification results of
[19] (+3.35% in case of the top-1 candidates) and obtained
better results compared to a server-side system proposed in
[14] (+2.3% in case of the top-1 candidates). Finally, in
Table I, we show the computational time achieved by all
different approaches. These results are obtained by averaging
the classification time for all the images. Table I shows that our
approach, although increases the number of features employed
in the system (3 features respect 2 employed by [19]), it
has similar computation time. The last column of Table I
shows also the time performances obtained when multi-core
optimization is enabled. This optimization is achieved by using
the Intel TBB library [26] compiled for the Android operating
system. The Android application that implements the proposed
food recognition engine can be downloaded at the following
URL: https://play.google.com/store/apps/details?id=
org.imperial.amfoodrecognition

B. Activity recognition

To demonstrate how the proposed method can be combined
with daily activity recognition, the mobile app is implemented

TABLE I. AVERAGE PROCESSING TIME OBTAINED ON THE DATABASE
UEC-FOOD100

Time using 1 core [sec] Time using 4 core [sec]

Proposed approach 0.897 0.557

All Features 1.112 0.767

Our implementation of [19] 0.729 0.438

TABLE II. AVERAGE CONFUSION MATRIX FOR 6 DAILY ACTIVITIES
OBTAINED BY THE PROPOSED SYSTEM

Run. Walk. Cycl. Cas.Mov. Pub.Trans. Stand.
Run. 98.05 1.36 0.00 0.59 0.00 0.00
Walk. 0.07 96.68 0.40 1.19 1.66 0.00
Cycl. 0.37 3.72 93.63 1.49 0.41 0.38

Cas.Mov. 0.50 5.40 3.80 88.25 1.37 0.69
Pub.Trans. 0.00 0.40 0.53 0.00 94.15 4.93

Stand. 0.00 0.00 0.00 0.00 15.03 84.97

with activity recognition for 6 common daily activities. Since
the activity recognition should be executed continuously in
the background of a smart phone, we develop an algorithm
that requires a restricted amount of resources and minimal
phone battery usage. The activity recognition is obtained by
exploiting machine learning techniques on the inertial sensors
data of the smart phone (i.e., gyroscope, accelerometer and
magnetometer data). For learning the system, we record more
than 70 sections of different physical activities collected by
5 people. The final database contains around 3 hours of
data. The sensor data are captured using the SensorLog app
available in the Android app store. The 6 daily activities
taken into account in the proposed approach are: Public
Transport, Running, Standing, Casual Movement, Cycling and
Walking. There are more than 180 possible features related
to the activity recognition that can be extracted from a time
segment containing inertial sensor data. These features include
statistical measurement (median, mean, variance, maximum,
minimum etc.), first derivate, axes correlation, zero cross,
mean cross, peak-to-peak distance, amplitude and even more
complex features like the Skewness and Kurtosis of the signal.
Due to resource constrains, we cannot use all of these features
for real-time implementation. Therefore, we applied a wrapper
feature selection approach [27] to identify the first 12 most
discriminative features. These features are used to represent
the data that we finally classify using a linear classifier. To test
the validity of the proposed approach, we applied a five-cross
validation on the considered database. The average confusion
matrix obtained by the proposed solution is shown in Table II.
In Fig. 6 we show the outputs obtained by integrating activity
recognition with daily food intake recognition.

C. User study

In order to evaluate the performance of the proposed mobile
app in real scenarios, we asked 5 participants to test our solu-
tion and compare it to the solution developed by [19] (available
at the following URL: http://foodcam.mobi/FoodCam2.apk).
These comparisons are all made in a free-living condition. In
each session, the user will assign 2 points if the app finds the
correct class within the top 5 food candidates, 1 point if a
similar class is present although the correct class is not, and 0
point if none of the proposed classes in the output is related
to the correct class. The cumulative scores of each user are
showed in Fig. 7. These results confirmed the same finding
obtained in performance evaluation that our proposed achieves



Fig. 7. Quality assessment of the proposed algorithm versus the solution in
[19]. Each user evaluate the apps verifying the food classification output in
real scenarios.

a higher accuracy. In order to make the app as reliable as
possible, we trained the final model adopted in this experiment
(also included in the released version of the app) through a
variant of the original database where all the initial images,
the images flipped horizontally, rotate by 90 and by 45 degree
have been considered.

V. CONCLUSIONS

In this paper, we proposed an integrated framework for
real-time food recognition by exploiting a hierarchy of vi-
sual features extracted from the smart phone. The proposed
software environment is further integrated with daily activity
recognition, allowing combined assessment of food intake and
energy expenditure estimation by using a single app. The
proposed approach has been compared to the state-of-the-
art algorithms, demonstrating improved accuracy and ease of
usability. Future work will be devoted to the measurement
of the rate of food consumption and the incorporation of
reinforcement learning for online adaptation of the classifi-
cation algorithm for user-specific training and performance
enhancement.
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