3,013 research outputs found
Numerical Study of the Spin-Flop Transition in Anisotropic Spin-1/2 Antiferromagnets
Magnetization processes of the spin-1/2 antiferromagnetic model in two
and three spatial dimensions are studied using quantum Monte Carlo method based
on stochastic series expansions. Recently developed operator-loop algorithm
enables us to show a clear evidence of the first-order phase transition in the
presence of an external magnetic field. Phase diagrams of closely related
systems, hard core bosons with nearest-neighbor repulsions, are also discussed
focusing on possibilities of phase-separated and supersolid phases.Comment: 4 pages, Revtex version 4, with 4 figures embedded, To appear in
Phys. Rev.
Kosterlitz-Thouless Transition Line for the Two Dimensional Coulomb Gas
With a rigorous renormalization group approach, we study the pressure of the
two dimensional Coulomb Gas along a small piece of the Kosterlitz-Thouless
transition line, i.e. the boundary of the dipole region in the
activity-temperature phase-space.Comment: 61 pages, 2 figure
Molecular evidence of the haploid origin in wheat (Triticum aestivum L.) with Aegilops kotschyi cytoplasm and whole genome expression profiling after haploidization
Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively
Spectral functions of the Falicov-Kimball model with electronic ferroelectricity
We calculate the angular resolved photoemission spectrum of the
Falicov-Kimball model with electronic ferroelectricity where - and
-electrons have different hoppings. In mix-valence regimes, the presence of
strong scattering processes between - excitons and a hole, created by
emission of an electron, leads to the formation of pseudospin polarons and
novel electronic structures with bandwidth scaling with that of -
excitons. Especially, in the two-dimensional case, we find that flat regions
exist near the bottom of the quasiparticle band in a wide range of the - and
-level energy difference.Comment: 5 pages, 5 figure
Competing interactions in the XYZ model
We study the interplay between a XY anisotropy , exchange modulations
and an external magnetic field along the z direction in the XYZ chain using
bosonization and Lanczos diagonalization techniques. We find an Ising critical
line in the space of couplings which occur due to competing relevant
perturbations which are present. More general situations are also discussed.Comment: 6 pages, 6 figure
Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO
Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is
presented in a framework of Heisenberg model. We have obtained an experimental
absolute value of the paramagnetic spin susceptibility of CuO by subtracting
the orbital susceptibility separately from the total susceptibility through the
Cu NMR shift measurement, and compared directly with the theoretical
predictions. The result is best described by a 1D antiferromagnetic
Heisenberg (AFH) model, supporting the speculation invoked by earlier authors.
We also present a semi-quantitative reason why CuO, seemingly of 3D structure,
is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure
Low energy pre-blended mortars: Part 2 – Production and characterisation of mortars using a novel lime drying technique
The presence of free water in mortars destined for silo or bagged storage can lead to the degradation of the binder phase. Such water may be present as a result of using wet, as-delivered sand or as a consequence of prior processes such as de-activation of Roman cement. Thus, water must be removed from the system prior to storage. Part 1 of this paper describes the control of a technique by which quicklime is added to the wet system which principally dries it by both slaking the quicklime and evaporation as a consequence of the exothermic slaking reaction. Two examples of mortars are presented in which excess water is removed from the system by the inclusion of quicklime. In the first, the water is present in the as-delivered sand and the binder is a combination of the slaked lime and ggbs. In the second, the water remains after pre-hydration of a Roman cement which is a process to retard its rapid
setting characteristics. It is shown that optimally dried mortars are not subject to degradation following storage of both mortar types
Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet
The exact expression derived by Bougourzi, Couture, and Kacir for the
2-spinon contribution to the dynamic spin structure factor
of he one-dimensional =1/2 Heisenberg antiferromagnet at is evaluated
for direct comparison with finite-chain transition rates () and an
approximate analytical result previously inferred from finite- data, sum
rules, and Bethe-ansatz calculations. The 2-spinon excitations account for
72.89% of the total intensity in . The singularity structure
of the exact result is determined analytically and its spectral-weight
distribution evaluated numerically over the entire range of the 2-spinon
continuum. The leading singularities of the frequency-dependent spin
autocorrelation function, static spin structure factor, and -dependent
susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript
Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling
We propose a one-dimensional Hamiltonian which supports Majorana
fermions when -wave superfluid appears in the ultracold atomic
system and obtain the phase-separation diagrams both for the
time-reversal-invariant case and time-reversal-symmetry-breaking case. From the
phase-separation diagrams, we find that the single Majorana fermions exist in
the topological superfluid region, and we can reach this region by tuning the
chemical potential and spin-orbit coupling . Importantly, the
spin-orbit coupling has realized in ultracold atoms by the recent experimental
achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold
atomic system described by is a promising platform to find the
mysterious Majorana fermions.Comment: 5 papers, 2 figure
Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling
The electromagnetic characteristics of bilayer quantum Hall systems in the
presence of interlayer coherence and tunneling are studied by means of a
pseudospin-texture effective theory and an algebraic framework of the
single-mode approximation, with emphasis on clarifying the nature of the
low-lying neutral collective mode responsible for interlayer tunneling
phenomena. A long-wavelength effective theory, consisting of the collective
mode as well as the cyclotron modes, is constructed. It is seen explicitly from
the electromagnetic response that gauge invariance is kept exact, this
implying, in particular, the absence of the Meissner effect in bilayer systems.
Special emphasis is placed on exploring the advantage of looking into quantum
Hall systems through their response; in particular, subtleties inherent to the
standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.
- …
