3,013 research outputs found

    Numerical Study of the Spin-Flop Transition in Anisotropic Spin-1/2 Antiferromagnets

    Full text link
    Magnetization processes of the spin-1/2 antiferromagnetic XXZXXZ model in two and three spatial dimensions are studied using quantum Monte Carlo method based on stochastic series expansions. Recently developed operator-loop algorithm enables us to show a clear evidence of the first-order phase transition in the presence of an external magnetic field. Phase diagrams of closely related systems, hard core bosons with nearest-neighbor repulsions, are also discussed focusing on possibilities of phase-separated and supersolid phases.Comment: 4 pages, Revtex version 4, with 4 figures embedded, To appear in Phys. Rev.

    Kosterlitz-Thouless Transition Line for the Two Dimensional Coulomb Gas

    Full text link
    With a rigorous renormalization group approach, we study the pressure of the two dimensional Coulomb Gas along a small piece of the Kosterlitz-Thouless transition line, i.e. the boundary of the dipole region in the activity-temperature phase-space.Comment: 61 pages, 2 figure

    Molecular evidence of the haploid origin in wheat (Triticum aestivum L.) with Aegilops kotschyi cytoplasm and whole genome expression profiling after haploidization

    Get PDF
    Aegiolops kotschyi cytoplasmic male sterile system often results in part of haploid plants in wheat (Triticum aestivum L.). To elucidate the origin of haploid, 235 wheat microsatellite (SSR) primers were randomly selected and screened for polymorphism between haploid (2n = 3x = 21 ABD) and its parents, male-sterile line YM21 (2n = 6x = 42 AABBDD) and male fertile restorer YM2 (2n = 6x = 42 AABBDD). About 200 SSR markers yielded clear bands from denatured PAGE, of which 180 markers have identifiable amplification patterns, and 20 markers (around 8%) resulted in different amplification products between the haploid and the restorer, YM2. There were no SSR markers that were found to be distinguishable between the haploid and the male sterile line YM21. In addition, different distribution of HMW-GS between endosperm and seedlings from the same seeds further confirmed that the haploid genomes were inherited from the maternal parent. After haploidization, 1.7% and 0.91% of total sites were up- and down-regulated exceeding twofold in the shoot and the root of haploid, respectively, and most of the differentially expressed loci were up/down-regulated about twofold. Out of the sensitive loci in haploid, 94 loci in the shoot, 72 loci in the root can be classified into three functional subdivisions: biological process, cellular component and molecular function, respectively

    Spectral functions of the Falicov-Kimball model with electronic ferroelectricity

    Get PDF
    We calculate the angular resolved photoemission spectrum of the Falicov-Kimball model with electronic ferroelectricity where dd- and ff-electrons have different hoppings. In mix-valence regimes, the presence of strong scattering processes between dd-ff excitons and a hole, created by emission of an electron, leads to the formation of pseudospin polarons and novel electronic structures with bandwidth scaling with that of dd-ff excitons. Especially, in the two-dimensional case, we find that flat regions exist near the bottom of the quasiparticle band in a wide range of the dd- and ff-level energy difference.Comment: 5 pages, 5 figure

    Competing interactions in the XYZ model

    Get PDF
    We study the interplay between a XY anisotropy γ\gamma, exchange modulations and an external magnetic field along the z direction in the XYZ chain using bosonization and Lanczos diagonalization techniques. We find an Ising critical line in the space of couplings which occur due to competing relevant perturbations which are present. More general situations are also discussed.Comment: 6 pages, 6 figure

    Spin Susceptibility and Superexchange Interaction in the Antiferromagnet CuO

    Full text link
    Evidence for the quasi one-dimensional (1D) antiferromagnetism of CuO is presented in a framework of Heisenberg model. We have obtained an experimental absolute value of the paramagnetic spin susceptibility of CuO by subtracting the orbital susceptibility separately from the total susceptibility through the 63^{63}Cu NMR shift measurement, and compared directly with the theoretical predictions. The result is best described by a 1D S=1/2S=1/2 antiferromagnetic Heisenberg (AFH) model, supporting the speculation invoked by earlier authors. We also present a semi-quantitative reason why CuO, seemingly of 3D structure, is unexpectedly a quasi 1D antiferromagnet.Comment: 7 pages including 4 tables and 9 figure

    Low energy pre-blended mortars: Part 2 – Production and characterisation of mortars using a novel lime drying technique

    Get PDF
    The presence of free water in mortars destined for silo or bagged storage can lead to the degradation of the binder phase. Such water may be present as a result of using wet, as-delivered sand or as a consequence of prior processes such as de-activation of Roman cement. Thus, water must be removed from the system prior to storage. Part 1 of this paper describes the control of a technique by which quicklime is added to the wet system which principally dries it by both slaking the quicklime and evaporation as a consequence of the exothermic slaking reaction. Two examples of mortars are presented in which excess water is removed from the system by the inclusion of quicklime. In the first, the water is present in the as-delivered sand and the binder is a combination of the slaked lime and ggbs. In the second, the water remains after pre-hydration of a Roman cement which is a process to retard its rapid setting characteristics. It is shown that optimally dried mortars are not subject to degradation following storage of both mortar types

    Two-spinon dynamic structure factor of the one-dimensional S=1/2 Heisenberg antiferromagnet

    Get PDF
    The exact expression derived by Bougourzi, Couture, and Kacir for the 2-spinon contribution to the dynamic spin structure factor Szz(q,ω)S_{zz}(q,\omega) of he one-dimensional SS=1/2 Heisenberg antiferromagnet at T=0T=0 is evaluated for direct comparison with finite-chain transition rates (N28N\leq 28) and an approximate analytical result previously inferred from finite-NN data, sum rules, and Bethe-ansatz calculations. The 2-spinon excitations account for 72.89% of the total intensity in Szz(q,ω)S_{zz}(q,\omega). The singularity structure of the exact result is determined analytically and its spectral-weight distribution evaluated numerically over the entire range of the 2-spinon continuum. The leading singularities of the frequency-dependent spin autocorrelation function, static spin structure factor, and qq-dependent susceptibility are determined via sum rules.Comment: 6 pages (RevTex) and 5 figures (Postscript

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential μ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure

    Electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling

    Full text link
    The electromagnetic characteristics of bilayer quantum Hall systems in the presence of interlayer coherence and tunneling are studied by means of a pseudospin-texture effective theory and an algebraic framework of the single-mode approximation, with emphasis on clarifying the nature of the low-lying neutral collective mode responsible for interlayer tunneling phenomena. A long-wavelength effective theory, consisting of the collective mode as well as the cyclotron modes, is constructed. It is seen explicitly from the electromagnetic response that gauge invariance is kept exact, this implying, in particular, the absence of the Meissner effect in bilayer systems. Special emphasis is placed on exploring the advantage of looking into quantum Hall systems through their response; in particular, subtleties inherent to the standard Chern-Simons theories are critically examined.Comment: 9 pages, Revtex, to appear in Phys. Rev.
    corecore