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Competing interactions in the XYZ model
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We study the interplay between anXY anisotropyg, exchange modulations, and an external magnetic field
along thez direction in anXYZ chain using bosonization and Lanczos diagonalization techniques. We find an
Ising critical line in the space of couplings which occur due to competing relevant perturbations that are
present. More general situations are also discussed.
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I. INTRODUCTION

The competition between different relevant perturbatio
that can render a system critical in a certain domain of
couplings space has been studied by many authors.1–8 Within
a low-energy description of many different one-dimensio
~1D! lattice models, one often finds the double-frequen
sine-Gordon model,3 that is, a U(1) scalar field with two
perturbations of different frequencies. In the case where b
perturbations are relevant and for a certain frequency rati
has been conjectured that an Ising criticality can arise.3 Such
a situation has been found in the study of different latt
systems~see, e.g., Ref. 6, and references therein!. More re-
cently, the so-called self-dual sine-Gordon model has b
studied in Ref. 6.

A simple realization of this situation is found in an exac
solvable case, i.e., in the dimerizedXY chain8,9 and a quali-
tative analysis of the phase diagram has been presente
more general cases in a field.8 The effect of anXY anisot-
ropy has also been studied for the FibonacciXY chain in a
magnetic field where it was shown that the rather involv
staircase structure of the magnetization curve gradually
appears by increasing the anisotropy of the spin-excha
interactions.10

In the present paper, we present a unified picture of
above-mentioned effects and describe, by using bosoniza
as well as numerical techniques, generic situations in wh
a spin gap opening mechanism11 competes with anXY an-
isotropy to render Ising criticality. This issue was studi
first in Refs. 7 and 8. In Ref. 8, the interplay between
gap-opening perturbation andXY anisotropy was analyzed
and a qualitative phase diagram was proposed. In this pa
we focus on the Hamiltonian

H5(
n

@~11g!Sn
xSn11

x 1~12g!Sn
ySn11

y 1d~21!n

3~Sn
xSn11

x 1Sn
ySn11

y !1DSn
zSn11

z #2h(
n

Sn
z , ~1!

which captures most of the essential aspects referre
above, and provide quantitative results that support the s
ments made in Ref. 8. A more general situation, as that a
ing in the FibonacciXYZ chain in a magnetic field, is dis
cussed in the conclusions.
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II. FREE FERMION RESULTS

In preparation for the analysis of more general situatio
first we discuss theXY or D50 case that already bears som
generic features. In this case, the model is exactly solvabl
it reduces to a bilinear fermionic form. As is well known
after the usual~1D! Jordan-Wigner transformation, th
Hamiltonian can be readily diagonalized by means of
Bogoliubov transformation, leading to

H5 (
k51

N/4

$Ek,0~d,g,h!~dk,0
† dk,011!1Ek,1~d,g,h!

3~dk,1
† dk,111!%, ~2!

where

Ek(0,1)5
1

A2
@11cos~k!1~d21g2!@12cos~k!#12h2

6 f ~d,g,k,h!#1/2 ~3!

and

f ~d,g,k,h!52„d2g2@12cos~k!#212h2$11cos~k!

1d2@12cos~k!#%…1/2. ~4!

The mean value of the magnetization is thus given by

^M &5
]^H&GS

]h
5

1

L (
k51

N/4 F]Ek,0

]h
~d,g,h!1

]Ek,1

]h
~d,g,h!G ,

~5!

where GS denotes the ground state, which is the vacuum
the Bogoliubov particles’ Fock space.~It should be noticed
that the external field does not act as a chemical potentia
these particles.!

From Eqs.~3! and~4!, one easily obtains the critical field
values where one of the modes becomes gapless, i.e., w
the Ising transition occurs8

hc56Ad22g2, ~6!

which shows that the Ising transition can only occur ford
.g.

The exact magnetization curve shown in Fig. 1 displa
all the features we want to discuss~we focus in the region of
©2003 The American Physical Society26-1
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h.0). First of all, one notices that there is no actual plate
since the magnetization starts to increase as soon ash is
turned on, and this is due to the breaking of the U(1) sy
metry forgÞ0. In the region of fields belowhc @Eq. ~6!#, we
are in what we call the ‘‘pseudoplateau region,’’ where t
slope of the magnetization curve is small and we have do
nant density wave correlations. At the critical field, one o
serves the Ising transition, where the magnetization sho
behave asM2Mc}(h2hc)(lnuh2hcu21). This behavior can
be understood from the analogy with the Ising model7,8

since the transition is driven by the magnetic field, it pla
the role of temperature in the Ising model and, hence,
magnetization is the analog of the specific heat. Forh.hc ,
the system is in theXY phase, where the magnetization i
creases more rapidly and which should be characterized
nonvanishing order parameter that is thex ~or y) component
of the staggered magnetization. However, the analysis of
latter becomes rather subtle—even for the simple nondim
ized (d50) case.17 These phases are illustrated schem
cally in Fig. 2. Finally, a second Ising transition is observ
before saturation, which occurs ath51 independent of the
values ofd and g. For d,g, the first transition does no
occur.

FIG. 1. Exact magnetization curve of theXY case. The inset
displays the logarithmic singularity dominating the susceptibility
hc5Ad22g2.

FIG. 2. Schematic ground-state diagram forD50. On ap-
proaching the massless transition line~6!, the magnetic susceptibil
ity diverges asx(h)} ln uh2hcu.
14442
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III. BOSONIZATION ANALYSIS

We discuss the results obtained so far within the boson
tion approach given below, where we argue that the sa
picture is valid for arbitraryD, providedd andg are suitably
renormalized. For smallg andd, one can study the effects o
such perturbations using bosonization, which allows one
includeD andh exactly through the Bethe ansatz solution f
the Luttinger parameterK.

The large-scale behavior of theXXZ chain can be de-
scribed by a U(1) free boson theory with Hamiltonian

H05
1

2E dxS vK~]xf̃ !21
v
K

~]xf!2D , ~7!

which corresponds to the Tomonaga-Luttinger Hamiltoni
The fieldf and its dualf̃ are given by the sum and differ
ence of the light-cone components, respectively. The c
stant K governs the conformal dimensions of the boso
vertex operators and can be obtained exactly from the Be
ansatz solution of theXXZ chain ~see, e.g., Ref. 12 for a
detailed summary, and references therein!. We haveK51 for
the SU(2) symmetric case (D51) which is related to the
radius R of Ref. 12 by K2152pR2. In Eq. ~7!, v corre-
sponds to the Fermi velocity of the fundamental excitatio
of the system. In terms of these fields, the spin operators

Sx
z;

1

A2p
]xf1a:cos~2kFx1A2pf!:1

^M &
2

, ~8!

Sx
6;~21!x:e6 iA2pf̃@bcos~2kFx1A2pf!1c#:, ~9!

where the colons denote normal ordering with respect to
ground state with magnetization^M &. The Fermi momentum
kF is related to the magnetization of the chain askF5(1
2^M &)p/2. The effect of anXYZ anisotropy and/or the ex
ternal magnetic field is then to modify the scaling dime
sions of the physical fields throughK and the commensura
bility properties of the spin operators, as can be seen fr
Eqs.~8! and~9!. The constantsa, b, andc were numerically
computed in the case of zero magnetic field13 ~see also Ref.
14!.

The bosonized Hamiltonian including the perturbatio
then reads

Hbos5H01l1E dx cos~A2pf!1l2E dx cos~A8pf̃!,

~10!

wherel1}d andl2}g.
The scaling dimensions of the perturbations in Eq.~10!

are K/2 and 2/K, respectively, which in theXX case (K
52) are both equal to unity. This allows one to understa
within this approach, the appearance of the Ising transiti6

since in this self-dual case and forh50 one can map the
bosonic system into two Majorana fields, and the critical li
is given byl156l2, where one of the masses of the tw
Majorana fields vanishes rendering criticality. As soon as
external field is turned on, the masses of these Major

t

6-2
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COMPETING INTERACTIONS IN THEXYZ MODEL PHYSICAL REVIEW B 67, 144426 ~2003!
fermions change and we then need a bigger value ofl1 ~i.e.,
d) to find the transition8 @see Eq.~6!#.

This can be extended forD.0, since its only effect is to
modify the scaling dimensions of the two perturbatio
throughK(D,h). It is interesting to note, however, that fo
D.0, the cosine of the dual field is less relevant, becom
barely marginal forD51 andh50 @K(1,0)51#; opening
the question if one should still expect the Ising transition
occur. One can argue that this is so by analyzing the one-
renormalization group equations given by

dl1~ l !

dl
5S 22

K

2 Dl1~ l !,

dl2~ l !

dl
5S 22

2

K Dl2~ l !,

dK~ l !

dl
52

K2

2
l1

2~ l !12l2
2~ l !. ~11!

The large-scale behavior of the parameters obtained f
these equations shows that the competition between the
cosines can still occur, giving rise to the Ising criticality ev
in this limiting situation. From this qualitative analysis on
expects, using power counting, a critical line forh50 given
by

d}gn ~12!

with n5Ke f f(12Ke f f/4)/(Ke f f21), where Ke f f is the
large-scale value ofK.

We provide numerical evidence for the validity of E
~12! with n51 below.

c. Numerical Results.In what follows, we examine this
latter conjecture by studying numerically the extreme SU(
case (D51). On the other hand, this enables an independ
test of the bosonization scenario within nonperturbative
gimes.

First, we computed the gap of Hamiltonian~1! at ^M &
50 by means of Lanczos diagonalizations15 of finite chain
lengthsL with periodic boundary conditions. IfL/4 is an
integer, it turns out that the ground state is even, i
exp(ip(nsn

1sn
2)[1, otherwise the gap spectrum has to

computed within the odd subspace ofH.16 In Fig. 3, we
display the results so obtained for 14<L<22 ~see Ref. 18!.
As expected, finite-size effects become noticeable on
proaching the critical regime encompassed within the p
nounced gap minima, whereas convergence towards the
modynamic limit becomes typically logarithmic.19

Interestingly, the locations of these minima result, howev
fairly independent of the system size, thus, facilitating
estimation of the critical line. ForL<12, however, the spec
trum gap increases monotonically withugu. Therefore, to
avoid misleading results, we dismiss the data of these s
sizes. In turn, this impedes the usage of most of the recur
extrapolation algorithms encountered in the literature19

which show their full strength only if they can be iterate
several times on a large sequence of sizes. Thus, we co
ourselves with a standard~logarithmic! gap extrapolation of
14442
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the form g.gap(L)1A/LB. Though semiquantitative@i.e.,
A5A(g,d) andB5B(g,d)], the results shown in the inse
of Fig. 3, nevertheless, indicate a gap closing at the min
of the finite-size data.

In studying numerically the massless regime, obtain
from such minima, however, it should be borne in mind th
finite-size corrections to the gap of the homogeneous Heis
berg chain (g5d50) vary slowly as ln(lnL)/ln2L, thus af-
fecting the results over a wide range of sizes.20 Therefore, we
are confronted to restricting considerations to regimes wh
either ugu or udu is not too small. Figure 4 exhibits our est
mation of the critical line down tod50.15, above which,
however, a wide linear regime shows up, in agreement w
the bosonization approach. Indeed, our numerical esti
tions suggestn'1. Similar results were observed for 0,D
,1 as well.

Second, we turn to the GS magnetization curves
Hamiltonian ~1!. These were calculated numerically a
(1/L)( j^GSus j

zuGS&, where in general the parity
exp(ip(nsn

1sn
2) of uGS& comes out to be both field and siz

dependent. In spite of the existence of a whole massive

FIG. 3. Gap spectrum for different sizes of Hamiltonian~1! with
D51. The inset exhibits the~estimative! gap extrapolations to the
thermodynamic limit.

FIG. 4. Gapless line of Hamiltonian~1! in the (g,d) coupling
parameter space arising from the positions of the gap minima
finite samples withD51 and^M &50.
6-3
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gime away the critical line, the magnetization grows linea
for small applied fieldsh ~a feature that holds also forD
50), rather than displaying a plateau at^M &50. This is
shown by the inset of Fig. 5~a!. Since this latter regime is
dominated by a finite gap width~i.e., short-range correla
tions!, finite-size effects become negligible there. This re
ders our low-field results most reliable, until the first par
change inuGS& occurs~signaled by an abrupt increase of th
magnetization!, probably associated to the emergence of g
less modes such as those referred to in the free fermion c
When selecting the Hamiltonian parameters in a mass
~zero-field! point, an interesting effect—yet to b
understood—occurs. As is shown in Fig. 5~b!, this results in
the removal of all the pseudoplateaux observed in Fig. 5~a!
with a massiveg-d point. Also, notice that near the brink o
saturation, in either case the susceptibility tends to dive
alike theXY situation.

Finally, we address to the predicted Ising behavior of
magnetization curves near the critical fieldshc discussed in
the previous sections. Upon estimating the former with
fields hc(L) involving the first parity jump in the GS of a
finite chain, we obtained a fair logarithmic regime actua
applying over more than two decades in (h2hc)(lnuh2hcu

FIG. 5. Magnetization curves forD51. ~a! The piecewise con-
tinuous behavior is related to parity changes in the ground s
The inset exhibits the linear response at low-field regimes.~b! Re-
sults arising for a massless (g,d) point.
14442
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21). This is displayed in Fig. 6. The value of the upper li
slope results almost independent of the system size an
indicative of the logarithmic regimes entailed both by t
free fermion and bosonization approaches.

IV. CONCLUSIONS

To summarize, we have studied how the tendencies
wards the formation of massive spin excitations~through
dimerizedd exchanges! and towards theXY ordering ~via
pairing of g-interactions!, compete with each other. In th
bosonization picture, these tendencies manifest themselv
the existence of two~competing! relevant interactions and
bring about the Ising transition, which in fact is connected
the same one driven by an external field. Due to the break
of the U(1) symmetry, the latter does not couple to a
conserved quantity and, therefore, the magnetization pro
gets essentially modified with respect to theg50 case, i.e.,
it ever increases in spite of the presence of massive regim

Both the bosonization and the numerical analyses sup
the picture that the physical mechanism rendering the Is
transition is quite general, and valid both in the strong a
weak coupling limits. Following the ideas given in Ref. 2
one can conjecture that a similar picture for each plateau
theXYZ Fibonacci chain holds. The mechanism in that ca
is the same, where the relevant operator coming from dim
ization is replaced for each plateaux by the operatorcom-
mensurateat the corresponding frequency of the Fibona
Fourier spectrum. From this, one concludes that a sim
picture as that found in theXY case10 is also valid for ge-
neric XYZ Fibonacci chains.

The numerical analysis lent further support to our theor
ical results within several nonperturbative situations. W
found evidence of a massless line along with the expec
Ising like behavior near critical fields. In turn, this sugge
that most basic features of the fully interacting system can
captured by the free fermion picture discussed above. H

e.

FIG. 6. Magnetization behavior forD51 near critical fields
referred to in the text. The slope value suggests the emergence
logarithmic regime as that observed in Fig. 1.
6-4
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ever, the issue as to whether or notall of the GS parity
changes induced by the field@Fig. 5~a!# correspond to Ising
transitions in the thermodynamic limit, remains quite op
In this latter regard, it will be interesting to elucidate wheth
there is an intrinsic relation between the vanishing of th
quasiplateaux@Fig. 5~b!# with the gap closing ath[0.

*On leave from Universidad Nacional de La Plata and Universi
Nacional de Lomas de Zamora.
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