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Competing interactions in the XY Z model
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We study the interplay between XY anisotropyy, exchange modulations, and an external magnetic field
along thez direction in anXY Z chain using bosonization and Lanczos diagonalization techniques. We find an
Ising critical line in the space of couplings which occur due to competing relevant perturbations that are
present. More general situations are also discussed.

DOI: 10.1103/PhysRevB.67.144426 PACS nuni®er75.10.Jm, 75.60.Ej

I. INTRODUCTION Il. FREE FERMION RESULTS

. . . In preparation for the analysis of more general situations,
The competition between different relevant perturbations. . _
L . . irst we discuss thXY or A=0 case that already bears some
that can render a system critical in a certain domain of the

couplings space has been studied by many auth8iithin generic features. In this case, the model is exactly solvable as

2 low-enerav descriotion of manv different one-dimensionalit reduces to a bilinear fermionic form. As is well known,
9y P y after the usual(1D) Jordan-Wigner transformation, the

(1D) lattice models, one often finds the doubIe—frequencyHam"tonian can be readily diagonalized by means of the
sine-Gordon modél,that is, a U(1) scalar field with two ﬁogoliubov transformation, leading to

perturbations of different frequencies. In the case where bot
perturbations are relevant and for a certain frequency ratio, it N/4

has been conjectured that an Ising criticality can atiSach H= E {Exo( 6, %h)(dl oot 1) +E1(8,7,h)
a situation has been found in the study of different lattice k=1 7 o '
systems(see, e.g., Ref. 6, and references theredifiore re-

N
cently, the so-called self-dual sine-Gordon model has been X (g pdia D 2)
studied in Ref. 6. where

A simple realization of this situation is found in an exactly
solvable case, i.e., in the dimeriz&d chairf® and a quali- 1

tative analysis of the phase diagram has been presented for Ek(o,1)=ﬁ[l+005(k)+(52+ y*)[1-cogk)]+2h?
more general cases in a fiéldhe effect of anXY anisot-
ropy ha_s a_Iso been st_udied for the FibonaxXusi chain_in a +f(5,v,k,h)]*? ®)
magnetic field where it was shown that the rather involved
staircase structure of the magnetization curve gradually disend
ﬁ]pt)gga::rﬁogyéomcreasmg the anisotropy of the spin-exchange £(8, 7k, h) = 2(6292[ 1 cog k) ]2+ 2h2{1+ cog k)
In the present paper, we present a unifie(_j picture pf the +62[1—cog k)Y (4
above-mentioned effects and describe, by using bosonization . )
as well as numerical techniques, generic situations in whict e mean value of the magnetization is thus given by
a spin gap opening mechaniShtompetes with arXY an- N/4
isotropy to render Ising criticality. This issue was studied (M)= ‘9<H>GS: E 2 @3(5 v,h)+ ik,l(g ¥.h)
first in Refs. 7 and 8. In Ref. 8, the interplay between a ah LE| oh 207 oh 7y
gap-opening perturbation arXly anisotropy was analyzed, 5)
and a qualitative phase diagram was proposed. In this pap
we focus on the Hamiltonian

Slhere GS denotes the ground state, which is the vacuum of
the Bogoliubov particles’ Fock spacét should be noticed
that the external field does not act as a chemical potential for
H=> [(1+9)S'S, ,+(1— ) S, ,+8(—1)" these particles.

n et e From Eqgs.(3) and(4), one easily obtains the critical field
values where one of the modes becomes gapless, i.e., where

X (S 4SS, ) +ASESE, ]-hD S, (1)  the Ising transition occufs
n

—+.[52_,2
which captures most of the essential aspects referred to Re==Vo"=7" ©
above, and provide quantitative results that support the statevhich shows that the Ising transition can only occur $or
ments made in Ref. 8. A more general situation, as that aris> y.
ing in the FibonaccXY Z chain in a magnetic field, is dis- The exact magnetization curve shown in Fig. 1 displays
cussed in the conclusions. all the features we want to discuege focus in the region of
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IIl. BOSONIZATION ANALYSIS

We discuss the results obtained so far within the bosoniza-
tion approach given below, where we argue that the same
picture is valid for arbitranA, providedsé andy are suitably
renormalized. For smaf} and 5, one can study the effects of
such perturbations using bosonization, which allows one to
includeA andh exactly through the Bethe ansatz solution for
the Luttinger parametef.

The large-scale behavior of théXZ chain can be de-
scribed by a U(1) free boson theory with Hamiltonian

1 - v
L H=—fdx(K(9 2+ —(04d)?|, 7
00 02 04 06 08 10 12 072 vK(9:$) K( x$) ™

h1J which corresponds to the Tomonaga-Luttinger Hamiltonian.

FIG. 1. Exact magnetization curve of theY case. The inset The field ¢ and its duaig are given by the sum and differ-
displays the logarithmic singularity dominating the susceptibility atence of the light-cone components, respectively. The con-
he=V&— 2. stantK governs the conformal dimensions of the bosonic
vertex operators and can be obtained exactly from the Bethe

h>0). First of all, one notices that there is no actual platea%nsatz solution of th&XZ chain (see, e.g., Ref. 12 for a

since the magnetization starts to increase as sooh ias . -
turned on, and this is due to the breaking of the U(1) sym-detaIIeOI summary, and references thecele havek =1 for

metry fory#0. In the region of fields belotw, [Eq. (6)], we the SU(2) symmetric caseA=1) which is related to the

P -1_ 2
are in what we call the “pseudoplateau region,” where theradIUSR of Ref. 12 byK™"=27R" In Eq. (7), v corre-

slope of the magnetization curve is small and we have domi§ponds to the Fermi velocity of the fundamental excitations

nant density wave correlations. At the critical field, one ob-Of the system. In terms of these fields, the spin operators read
serves the Ising transition, where the magnetization should 1 (M)
behave as1 — M x(h—h.)(Injh—h]—1). This behavior can z ) o ay. . W7
be understood from the analogy with the Ising matfél: Sk /27Ta"qH"’I'COE{ZKFXJr 2m):+ 2
since the transition is driven by the magnetic field, it plays

the role of temperature in the Ising model and, hence, the £ a\XaTiZmd 5 .
magnetization is the analog of the specific heat. Foh,, Sc~(=1)%e [beod 2kex+v2mg) +cl:, (9)

the system is in th&XY phase, where the magnetization in- \yhere the colons denote normal ordering with respect to the
creases more rapidly and which shquld be characterized by@round state with magnetizatigi ). The Fermi momentum
nonvanishing order parameter that is thery) component  _ is related to the magnetization of the chain kas=(1

of the staggered magnetization. However, the analysis of the<M>)7.,/2_ The effect of arXY Z anisotropy and/or the ex-
latter becomes rather subtle—even for the simple nondimelgrma| magnetic field is then to modify the scaling dimen-
ized (6=0) casgl. These phases are illustrated schematissions of the physical fields througfi and the commensura-
cally in Fig. 2. Finally, a second Ising transition is observedbi”ty properties of the spin operators, as can be seen from
before saturation, which occurs lat1 independent of the Egs.(8) and(9). The constants, b, andc were numerically
values of 6 and y. For 6<, the first transition does not computed in the case of zero magnetic fiéigee also Ref.
occur. 14).

The bosonized Hamiltonian including the perturbations

h XY then reads

()

m=0 HbOS=H0+)\1J’ dxcos(\/EqS)H\zJ’ dxcog\87 ),
/‘ (10

wherex ;o8 and o y.
The scaling dimensions of the perturbations in ELf)
Y are K/2 and 2K, respectively, which in theXX case K
plateau =2) are both equal to unity. This allows one to understand,
within this approach, the appearance of the Ising tranSition
since in this self-dual case and for=0 one can map the
bosonic system into two Majorana fields, and the critical line
FIG. 2. Schematic ground-state diagram fe=0. On ap- IS given by\,;=*\,, where one of the masses of the two
proaching the massless transition li&, the magnetic susceptibil- Majorana fields vanishes rendering criticality. As soon as the
ity diverges asy(h)In |h—hj. external field is turned on, the masses of these Majorana
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fermions change and we then need a bigger value, df.e., 045 —4—+— T
5) to find the transitioh[see Eq(6)]. L esof T T N=14)
This can be extended fax>0, since its only effect is to ool o 16
. . . . . AV 020f ]
modify the scaling dimensions of the two perturbations o1 1
throughK(A,h). It is interesting to note, however, that for S ool 20 |
A>0, the cosine of the dual field is less relevant, becoming 0351 06f 227
barely marginal forA=1 andh=0 [K(1,0)=1]; opening a L o0 R
the question if one should still expect the Ising transition to S 030 00 02 04 08 08 10 |
occur. One can argue that this is so by analyzing the one-loop
renormalization group equations given by
0.25 5202
dnq(l K i A=1
D=,
dl 2 0_20 1 L 1 L 1 2 1 L 1 L 1
00 02 04 06 08 1.0
dhs(l) 2 Y
i =(2— R)M('),
FIG. 3. Gap spectrum for different sizes of Hamiltoni{@hwith
0 K2 A=1. The inset exhibits théestimative gap extrapolations to the
= 7)\i(|)+ 2)\3(”. (11) thermodynamic limit.

the form g=gap(L)+A/LB. Though semiquantitativfi.e.,
The large-scale behavior of the parameters obtained from=A(y,5) andB=B(v,d)], the results shown in the inset
these equations shows that the competition between the twaf Fig. 3, nevertheless, indicate a gap closing at the minima
cosines can still occur, giving rise to the Ising criticality evenof the finite-size data.
in this limiting situation. From this qualitative analysis one In studying numerically the massless regime, obtained
expects, using power counting, a critical line for 0 given  from such minima, however, it should be borne in mind that
by finite-size corrections to the gap of the homogeneous Heisen-
berg chain /= 6=0) vary slowly as In(IL)/In’L, thus af-
S y” (12)  fecting the results over a wide range of siZéSherefore, we
are confronted to restricting considerations to regimes where
with v=Kes1(1—Kegti/4)/(Kett—1), where Kegr is the  either|y| or |8 is not too small. Figure 4 exhibits our esti-

large-scale value dof. mation of the critical line down ta5=0.15, above which,
We provide numerical evidence for the validity of Eq. however, a wide linear regime shows up, in agreement with
(12) with v=1 below. the bosonization approach. Indeed, our numerical estima-

c. Numerical Resultsin what follows, we examine this tions suggesit~1. Similar results were observed foxQ\
latter conjecture by studying numerically the extreme SU(2)<1 as well.
case A =1). On the other hand, this enables an independent Second, we turn to the GS magnetization curves of
test of the bosonization scenario within nonperturbative reHamiltonian (1). These were calculated numerically as
gimes. (1/L)2,—<G$ajz|GS>, where in general the parity

First, we computed the gap of Hamiltoniah) at (M) exp(m=,0, o,) of |GS) comes out to be both field and size
=0 by means of Lanczos diagonalizatibhsf finite chain ~ dependent. In spite of the existence of a whole massive re-
lengthsL with periodic boundary conditions. If/4 is an — T

integer, it turns out that the ground state is even, i.e., 061 1
exp(7=,0, 0,)=1, otherwise the gap spectrum has to be

computed within the odd subspace Hf'® In Fig. 3, we 051 .
display the results so obtained for44 <22 (see Ref. 18

As expected, finite-size effects become noticeable on ap- 04l 1
proaching the critical regime encompassed within the pro-

nounced gap minima, whereas convergence towards the ther- =

modynamic  limit becomes typically logarithmig. 03 7
Interestingly, the locations of these minima result, however, -

fairly independent of the system size, thus, facilitating the 02l i
estimation of the critical line. Fdr<12, however, the spec-

trum gap increases monotonically witly|. Therefore, to 01 . . . . .

avoid misleading results, we dismiss the data of these small ) 06 07 _ 08 _ o9 _ 10
sizes. In turn, this impedes the usage of most of the recursive
extrapolation algorithms encountered in the literatdre,
which show their full strength only if they can be iterated FIG. 4. Gapless line of Hamiltoniafl) in the (y,8) coupling
several times on a large sequence of sizes. Thus, we contgfdrameter space arising from the positions of the gap minima of
ourselves with a standartbgarithmig gap extrapolation of finite samples wittA=1 and(M)=0.
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10} 102k slope =1.02 -
08| 7
-------- =16
o6- | L F T4 =18 |
="y s =20 7
= ‘o =22
04} =
L §=0.3
ozl =0.2 ]
00| . .
10? 10"
(h-h ){(Log th-h_1-1)
10l FIG. 6. Magnetization behavior foA=1 near critical fields
’ referred to in the text. The slope value suggests the emergence of a
logarithmic regime as that observed in Fig. 1.
0.8}
06| —1). This is displayed in Fig. 6. The value of the upper line
I slope results almost independent of the system size and is
= 04| indicative of the logarithmic regimes entailed both by the
free fermion and bosonization approaches.
0.2}
IV. CONCLUSIONS
0.0 - ( b )_

To summarize, we have studied how the tendencies to-
wards the formation of massive spin excitatiofitsrough
dimerized § exchangesand towards theXY ordering (via

FIG. 5. Magnetization curves fak=1. (a) The piecewise con- Pairing of y-interactiong, compete with each other. In the
tinuous behavior is related to parity changes in the ground statd?0sonization picture, these tendencies manifest themselves in
The inset exhibits the linear response at low-field regini@sRe-  the existence of twdcompeting relevant interactions and
sults arising for a masslesy,(9) point. bring about the Ising transition, which in fact is connected to
the same one driven by an external field. Due to the breaking
of the U(1) symmetry, the latter does not couple to any
—0), rather than displaying a plateau @)=0. This is conserved quantity a_n_d, the_refore, the magnetization process
shown by the inset of Fig.(8). Since this latter regime is 9€tS essentially modified with respect to the 0 case, i.e.,
dominated by a finite gap widtki.e., short-range correla- it ever increases in sp_ﬂe of the presence of massive regimes.
tions), finite-size effects become negligible there. This ren- Both the bosonization and the numerical analyses support
ders our low-field results most reliable, until the first parity the picture that the physical mechanism rendering the Ising
Change ||1GS> Occurs(signa|ed by an abrupt increase of the transition Is quite general, and valid both in the strong and
magnetizatiol probably associated to the emergence of gapweak coupling limits. Following the ideas given in Ref. 21,
less modes such as those referred to in the free fermion cag@ne can conjecture that a similar picture for each plateaux in
When selecting the Hamiltonian parameters in a massledte XY Z Fibonacci chain holds. The mechanism in that case
(zero-field point, an interesting effect—yet to be is the same, where the relevant operator coming from dimer-
understood—occurs. As is shown in Figb} this results in  ization is replaced for each plateaux by the operatm-
the removal of all the pseudoplateaux observed in Figl 5 mensurateat the corresponding frequency of the Fibonacci
with a massivey-§ point. Also, notice that near the brink of Fourier spectrum. From this, one concludes that a similar
saturation, in either case the susceptibility tends to divergepicture as that found in thXY casé® is also valid for ge-
alike theXY situation. neric XY Z Fibonacci chains.

Finally, we address to the predicted Ising behavior of the The numerical analysis lent further support to our theoret-
magnetization curves near the critical fiekisdiscussed in ical results within several nonperturbative situations. We
the previous sections. Upon estimating the former with thdound evidence of a massless line along with the expected
fields h (L) involving the first parity jump in the GS of a Ising like behavior near critical fields. In turn, this suggests
finite chain, we obtained a fair logarithmic regime actually that most basic features of the fully interacting system can be
applying over more than two decades in—(h.)(Injh—h{ captured by the free fermion picture discussed above. How

0.0 0.5 1.0 1.5 20 25 3.0
hiJ

gime away the critical line, the magnetization grows linearly
for small applied fieldsh (a feature that holds also fak
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