9,062 research outputs found

    Molecular characterization of HbEREBP2, a jasmonateresponsive transcription factor from Hevea brasiliensis Muell. Arg.

    Get PDF
    Transcription factors of AP2/ERF superfamily are generally involved in defense responses of plants to biotic and abiotic stresses. Although, defense proteins are present in abundance in laticifers of rubber tree, little is known about their transcriptional regulation. In this study, a full length cDNA, referred to as HbEREBP2 was characterized by means of bioinformatic analysis and quantitative real-time RT-PCR. The HbEREBP2 was 786-bp in length and contained a 480-bp open reading frame (ORF) encoding a protein of 159 amino acid residues. Bioinformatic analysis showed that the deduced amino acid sequence of HbEREBP2 had a specific domain of AP2 superfamily and shared relative high identity with members of CBF/DREB subfamily from different plant species. Quantitative real-time RT-PCR revealed that methyl jasmonate was more effective than ethylene and rapidly than mechanical wounding on upregulating HbEREBP2 expression. The results suggest that HbEREBP2 may be involved in the regulation of jasmonate-mediated defense responses in laticifers of rubber tree.Key words: Hevea brasiliensis, Laticifer, defense proteins, AP2/ERF transcription factor, Methyl jasmonates, Ethephon, mechanical wounding

    Surveillance for seasonal influenza virus prevalence in hospitalized children with lower respiratory tract infection in Guangzhou, China during the post-pandemic era.

    Get PDF
    Influenza A(H1N1)pdm09, A(H3N2) and B viruses have co-circulated in the human population since the swine-origin human H1N1 pandemic in 2009. While infections of these subtypes generally cause mild illnesses, lower respiratory tract infection (LRTI) occurs in a portion of children and required hospitalization. The aim of our study was to estimate the prevalence of these three subtypes and compare the clinical manifestations in hospitalized children with LRTI in Guangzhou, China during the post-pandemic period. METHODS: Children hospitalized with LRTI from January 2010 to December 2012 were tested for influenza A/B virus infection from their throat swab specimens using real-time PCR and the clinical features of the positive cases were analyzed. RESULTS: Of 3637 hospitalized children, 216 (5.9%) were identified as influenza A or B positive. Infection of influenza virus peaked around March in Guangzhou each year from 2010 to 2012, and there were distinct epidemics of each subtype. Influenza A(H3N2) infection was more frequently detected than A(H1N1)pdm09 and B, overall. The mean age of children with influenza A virus (H1N1/H3N2) infection was younger than those with influenza B (34.4 months/32.5 months versus 45 months old; p<0.005). Co-infections of influenza A/ B with mycoplasma pneumoniae were found in 44/216 (20.3%) children. CONCLUSIONS: This study contributes the understanding to the prevalence of seasonal influenza viruses in hospitalized children with LRTI in Guangzhou, China during the post pandemic period. High rate of mycoplasma pneumoniae co-infection with influenza viruses might contribute to severe disease in the hospitalized children.published_or_final_versio

    Effects of tachyplesin on the morphology and ultrastructure of human gastric carcinoma cell line BGC-823

    Get PDF
    AIM To investigate the morphological and ultrastructural changes in the human gastric carcinoma cell line BGC-S23 after being treated with tachyplesin, METHODS Tachyplesin was isolated from acid extracts of Chinese horseshoe crab (Tachypleus tridentatus) hemocytes, BGC-823 cells and the cells treated with 2.0 mg/L tachyplesin were examined respectively under light microscope, scanning and transmission electron microscope. RESULTS BGC-823 cells had undergone the restorational alteration in morphology and ultrastructure after tachyplesin treatment. The changes were as follows: the shape of cells was unanimous, the volume enlarged and cells turned to be flat and spread, the nucleocytoplasmic ratio lessened and nuclear shape became rather regular, the number of nucleolus reduced and its volume lessened, heterchromatin decreased while euchromatin increased in nucleus. In the cytoplasm, mitochondria grew in number with consistent structure relatively, Golgi complex turned to be typical and well-developed, rough endoplasmic reticulum increased and polyribosome decreased. The microvilli at cellular surface were rare and the filopodia reduced while lamellipodia increased at the cell edge. CONCLUSION Tachyplesin could alter the malignant morphological and ultrastructural characteristics of human gastric carcinoma cells effectively and have a certain inducing differentiation effect on human gastric carcinoma cells

    Wall roughness induces asymptotic ultimate turbulence

    Get PDF
    Turbulence is omnipresent in Nature and technology, governing the transport of heat, mass, and momentum on multiple scales. For real-world applications of wall-bounded turbulence, the underlying surfaces are virtually always rough; yet characterizing and understanding the effects of wall roughness for turbulence remains a challenge, especially for rotating and thermally driven turbulence. By combining extensive experiments and numerical simulations, here, taking as example the paradigmatic Taylor-Couette system (the closed flow between two independently rotating coaxial cylinders), we show how wall roughness greatly enhances the overall transport properties and the corresponding scaling exponents. If only one of the walls is rough, we reveal that the bulk velocity is slaved to the rough side, due to the much stronger coupling to that wall by the detaching flow structures. If both walls are rough, the viscosity dependence is thoroughly eliminated in the boundary layers and we thus achieve asymptotic ultimate turbulence, i.e. the upper limit of transport, whose existence had been predicted by Robert Kraichnan in 1962 (Phys. Fluids {\bf 5}, 1374 (1962)) and in which the scalings laws can be extrapolated to arbitrarily large Reynolds numbers

    Site-specific incorporation of phosphotyrosine using an expanded genetic code.

    Get PDF
    Access to phosphoproteins with stoichiometric and site-specific phosphorylation status is key to understanding the role of protein phosphorylation. Here we report an efficient method to generate pure, active phosphotyrosine-containing proteins by genetically encoding a stable phosphotyrosine analog that is convertible to native phosphotyrosine. We demonstrate its general compatibility with proteins of various sizes, phosphotyrosine sites and functions, and reveal a possible role of tyrosine phosphorylation in negative regulation of ubiquitination

    Structure and mechanism of human DNA polymerase η

    Get PDF
    The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Pol eta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Pol eta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Pol eta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Pol eta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Pol eta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Pol eta in replicating through D loop and DNA fragile sites
    corecore