14 research outputs found

    Simultaneous VLBI Astrometry of H2O and SiO Masers toward the Semiregular Variable R Crateris

    Full text link
    We obtained, for the first time, astrometrically registered maps of the 22.2 GHz H2O and 42.8, 43.1, and 86.2 GHz SiO maser emission toward the semiregular b-type variable (SRb) R Crateris, at three epochs (2015 May 21, and 2016 January 7 and 26) using the Korean Very-long-baseline Interferometry Network. The SiO masers show a ring-like spatial structure, while the H2O maser shows a very asymmetric one-side outflow structure, which is located at the southern part of the ring-like SiO maser feature. We also found that the 86.2 GHz SiO maser spots are distributed in an inner region, compared to those of the 43.1 GHz SiO maser, which is different from all previously known distributions of the 86.2 GHz SiO masers in variable stars. The different distribution of the 86.2 GHz SiO maser seems to be related to the complex dynamics caused by the overtone pulsation mode of the SRb R Crateris. Furthermore, we estimated the position of the central star based on the ring fitting of the SiO masers, which is essential for interpreting the morphology and kinematics of a circumstellar envelope. The estimated stellar coordinate corresponds well to the position measured by Gaia

    Asymmetric distributions of H2O and SiO masers towards V627 Cas

    Full text link
    We performed simultaneous observations of the H2O 6(1,6) - 5(2,3) (22.235080 GHz) and SiO v= 1, 2, J = 1 - 0, SiO v = 1, J = 2 - 1, 3 - 2 (43.122080, 42.820587, 86.243442, and 129.363359 GHz) masers towards the suspected D-type symbiotic star, V627 Cas, using the Korean VLBI Network. Here, we present astrometrically registered maps of the H2O and SiO v = 1, 2, J = 1 - 0, SiO v = 1, J = 2 - 1 masers for five epochs from January 2016 to June 2018. Distributions of the SiO maser spots do not show clear ring-like structures, and those of the H2O maser are biased towards the north-north-west to west with respect to the SiO maser features according to observational epochs. These asymmetric distributions of H2O and SiO masers are discussed based on two scenarios of a bipolar outflow and the presence of the hot companion, a white dwarf, in V627 Cas. We carried out ring fitting of SiO v = 1, and v = 2 masers and estimated the expected position of the cool red giant. The ring radii of the SiO v = 1 maser are slightly larger than those of the SiO v = 2 maser, as previously known. Our assumption for the physical size of the SiO maser ring of V627 Cas to be the typical size of a SiO maser ring radius (\sim4 au) of red giants yields the distance of V627 Cas to be \sim1 kpc.Comment: 7 pages, 4 figures, 1 table, Published in MNRA

    Thermal Conductivity Characterization of Thermal Grease Containing Copper Nanopowder

    No full text
    As electronic devices and mainboards become smaller, the need for thermal conductive materials having excellent internal heat dissipation is increasing. In this study, nano thermal grease was prepared by mixing in copper nanopowder, which is used as a heat transfer medium in thermal grease, which is a kind of thermal conductive material, with silicon oil. In addition, copper powder was mixed with graphene and alumina, respectively, and the thermal conductivity performance was compared. As a result, the thermal conductivity improved by 4.5 W/m·k over the silicon base, and the upward trend of thermal conductivity increased steadily up to 15 vol. %, and the increasing trend decreased after 20 vol. %. In addition, the increased rate of thermal conductivity from 0 to 5 vol. % and 10 to 15 vol. % was the largest

    Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts

    No full text
    Multimetallic nanocatalysts with a controlled structure can provide enhanced catalytic activity and durability by exploiting electronic, geometric, and strain effects. Herein, we report the synthesis of a novel ternary nanocatalyst based on Mo doped PtNi dendritic nanowires (Mo-PtNi DNW) and its bifunctional application in the methanol oxidation reaction (MOR) at the anode and the oxygen reduction reaction (ORR) at the cathode for direct methanol fuel cells. An unprecedented Mo-PtNi DNW structure can combine multiple structural attributes of the 1D nanowire morphology and dendritic surfaces. In the MOR, Mo-PtNi DNW exhibits superior activity to Pt/C and Mo doped Pt dendritic nanowires (Mo-Pt DNW), and excellent durability. Furthermore, Mo-PtNi DNW demonstrates excellent activity and durability for the ORR. This work highlights the important role of compositional and structural control in nanocatalysts for boosting catalytic performances.ope

    Ternary dendritic nanowires as highly active and stable multifunctional electrocatalysts

    No full text
    Multimetallic nanocatalysts with a controlled structure can provide enhanced catalytic activity and durability by exploiting electronic, geometric, and strain effects. Herein, we report the synthesis of a novel ternary nanocatalyst based on Mo doped PtNi dendritic nanowires (Mo-PtNi DNW) and its bifunctional application in the methanol oxidation reaction (MOR) at the anode and the oxygen reduction reaction (ORR) at the cathode for direct methanol fuel cells. An unprecedented Mo-PtNi DNW structure can combine multiple structural attributes of the 1D nanowire morphology and dendritic surfaces. In the MOR, Mo-PtNi DNW exhibits superior activity to Pt/C and Mo doped Pt dendritic nanowires (Mo-Pt DNW), and excellent durability. Furthermore, Mo-PtNi DNW demonstrates excellent activity and durability for the ORR. This work highlights the important role of compositional and structural control in nanocatalysts for boosting catalytic performances. © The Royal Society of Chemistry 20161661sciescopu

    YBX1-Mediated DNA Methylation-Dependent SHANK3 Expression in Pbmcs and Developing Cortical Interneurons in Schizophrenia

    No full text
    Schizophrenia (SCZ) is a severe psychiatric and neurodevelopmental disorder. The pathological process of SCZ starts early during development, way before the first onset of psychotic symptoms. DNA methylation plays an important role in regulating gene expression and dysregulated DNA methylation is involved in the pathogenesis of various diseases. The methylated DNA immunoprecipitation-chip (MeDIP-chip) is performed to investigate genome-wide DNA methylation dysregulation in peripheral blood mononuclear cells (PBMCs) of patients with first-episode SCZ (FES). Results show that the SHANK3 promoter is hypermethylated, and this hypermethylation (HyperM) is negatively correlated with the cortical surface area in the left inferior temporal cortex and positively correlated with the negative symptom subscores in FES. The transcription factor YBX1 is further found to bind to the HyperM region of SHANK3 promoter in induced pluripotent stem cells (iPSCs)-derived cortical interneurons (cINs) but not glutamatergic neurons. Furthermore, a direct and positive regulatory effect of YBX1 on the expression of SHANK3 is confirmed in cINs using shRNAs. In summary, the dysregulated SHANK3 expression in cINs suggests the potential role of DNA methylation in the neuropathological mechanism underlying SCZ. The results also suggest that HyperM of SHANK3 in PBMCs can serve as a potential peripheral biomarker of SCZ
    corecore