4,270 research outputs found

    Zero-norm states and stringy symmetries

    Full text link
    We identify spacetime symmetry charges of 26D open bosonic string theory from an infinite number of zero-norm states (ZNS) with arbitrary high spin in the old covariant first quantized string spectrum. We give various evidences to support this identification. These include massive sigma-model calculation, Witten string field theory calculation, 2D string theory calculation and, most importantly, three methods of high-energy stringy scattering amplitude calculations. The last calculations explicitly prove Gross's conjectures in 1988 on high energy symmetry of string theory.Comment: 6 pages. Talks presented by Jen-Chi Lee at XXVIII Spanish Relativity Meeting (ERE2005),"A Century of Relativity Physics",Oviedo,Spain,6-10 Sep 2005 and "4th Meeting on constrained Dynamics and Quantum Gravity",Cala Gonone,Sardinia,Italy,12-16 Sep 2005. To appear in the Journal of Physics: Conference Serie

    Linear Relations and their Breakdown in High Energy Massive String Scatterings in Compact Spaces

    Full text link
    We calculate high energy massive scattering amplitudes of closed bosonic string compactified on the torus. For each fixed mass level with given quantized and winding momenta ((m/R),(1/2)nR), we obtain infinite linear relations among high energy scattering amplitudes of different string states. For some kinematic regimes, we discover that linear relations with N_{R}=N_{L} break down and, simultaneously, the amplitudes enhance to power-law behavior instead of the usual expoential fall-off behavior at high energies. It is the space-time T-duality symmetry that plays a role here. This result is consistent with the coexistence of the linear relations and the softer exponential fall-off behavior of high energy string scattering amplitudes as we pointed out prevously. It is also reminiscent of our previous work on the power-law behavior of high energy string/domain-wall scatterings.Comment: 18 pages, 1 figur

    Scatterings of Massive String States from D-brane and Their Linear Relations at High Energies

    Get PDF
    We study scatterings of bosonic massive closed string states at arbitrary mass levels from D-brane. We discover that all the scattering amplitudes can be expressed in terms of the generalized hypergeometric function with special arguments, which terminates to a finite sum and, as a result, the whole scattering amplitudes consistently reduce to the usual beta function. For the simple case of D-particle, we explicitly calculate high-energy limits of a series of the above scattering amplitudes for arbitrary mass levels, and derive infinite linear relations among them for each fixed mass level. The ratios of these high-energy scattering amplitudes are found to be consistent with the decoupling of high-energy zero-norm states of our previous works.Comment: 19 pages, no figure. v2:some minor corrections, refs added. v3:minor changes and final in Nucl.Phys.

    High-energy String Scatterings of Compactified Open String

    Get PDF
    We calculate high-energy massive string scattering amplitudes of compactified open string. We derive infinite linear relations, or stringy symmetries, among soft high-energy string scattering amplitudes of different string states in the Gross kinematic regime (GR). In addition, we systematically analyze all hard power-law and soft exponential fall-off regimes of high-energy compactified open string scatterings by comparing the scatterings with their 26D noncompactified counterparts. In particular, we discover the existence of a power-law regime at fixed angle and an exponential fall-off regime at small angle for high-energy compactified open string scatterings. The linear relations break down as expected in all power-law regimes. The analysis can be extended to the high-energy scatterings of the compactified closed string, which corrects and extends the previous results in [28] .Comment: 16 pages, 1 table. v2:typos corrected,references added. v3,v4:Eq.(26) typos. Eq.(27) correcte

    High-energy zero-norm states and symmetries of string theory

    Full text link
    High-energy limit of zero-norm states (HZNS) in the old covariant first quantized (OCFQ) spectrum of the 26D open bosonic string, together with the assumption of a smooth behavior of string theory in this limit, are used to derive infinitely many linear relations among the leading high-energy, fixed angle behavior of four point functions of different string states. As a result, ratios among all high-energy scattering amplitudes of four arbitrary string states can be calculated algebraically and the leading order amplitudes can be expressed in terms of that of four tachyons as conjectured by Gross in 1988. A dual calculation can also be performed and equivalent results are obtained by taking the high-energy limit of Virasoro constraints. Finally, as a consistent sample calculation, we compute all high-energy scattering amplitudes of three tachyons and one massive state at the leading order by saddle-point approximation to justify our results.Comment: 10 pages, no figure, modifications of text and reference

    Effect of lifestyle factors on risk of mortality associated with influenza in elderly people

    Get PDF
    published_or_final_versio

    Strain-gradient-induced magnetic anisotropy in straight-stripe mixed-phase bismuth ferrites: An insight into flexomagnetic phenomenon

    Full text link
    Implementation of antiferromagnetic compounds as active elements in spintronics has been hindered by their insensitive nature against external perturbations which causes difficulties in switching among different antiferromagnetic spin configurations. Electrically-controllable strain gradient can become a key parameter to tune the antiferromagnetic states of multiferroic materials. We have discovered a correlation between an electrically-written straight-stripe mixed-phase boundary and an in-plane antiferromagnetic spin axis in highly-elongated La-5%-doped BiFeO3_{3} thin films by performing polarization-dependent photoemission electron microscopy in conjunction with cluster model calculations. Model Hamiltonian calculation for the single-ion anisotropy including the spin-orbit interaction has been performed to figure out the physical origin of the link between the strain gradient present in the mixed phase area and its antiferromagnetic spin axis. Our findings enable estimation of the strain-gradient-induced magnetic anisotropy energy per Fe ion at around 5×\times10−12^{-12} eV m, and provide a new pathway towards an electric-field-induced 90∘^{\circ} rotation of antiferromagnetic spin axis at room temperature by flexomagnetism.Comment: 32 pages, 5 figure
    • …
    corecore