7,329 research outputs found

    Decentralized H ∞-controller design for nonlinear systems

    Get PDF
    This paper considers the decentralized H ∞-controller design problem for nonlinear systems. Sufficient conditions for the solution of the problem are presented in terms of solutions of Hamilton-Jacobi inequalities. The resulting design guarantees local asymptotic stability and ensures a predetermined L 2-gain bound on the closed-loop system.published_or_final_versio

    Decentralized H∞ controller design for nonlinear systems

    Get PDF
    published_or_final_versio

    Design of reliable controllers for symmetric composite systems:primary contingency case

    Get PDF
    This paper discusses the reliable controller design problem for symmetric composite systems composed of several identical subsystems. A reliable controller design procedure is presented in terms of the solutions to algebraic Riccati equations. The order of these AREs is much lower than that of the symmetric composite system. The resulting closed-loop system is reliable in that it provide guaranteed internal stability and H∞ performance when all sensors and actuators are operational as well as when the sensors or actuators of a prescribed subsystem experiences an outage.published_or_final_versio

    Prevalence of Mycoplasma pneumoniae: A cause for community‑acquired infection among pediatric populaztion

    Get PDF
    Background: Atypical pneumonia caused by Mycoplasma pneumoniae is a leading cause of mortality among the pediatric age group.Objectives: Our study was designed to know the prevalence of M. pneumoniae in children with community‑acquired pneumonia and the involvement in the cytoadherence to the respiratory epithelium by M. pneumoniae using electron microscopy and immuno‑gold labeling technique.Materials and Methods: A total of 152 children of 1 month to 12 years of age of both sexes attending Hebei Provincial People’s Hospital, Shijiazhuang, Hebei with diagnosed pneumonia were included in the study.Results: Out of 152 children 84 (55.3%) were males, and 68 (44.7%) were females. The mean age of the patients in the control group (50 patients) was 18.5 ± 3 months with 31 (62%) males and 19 (38%) females. IgM antibodies against M. pneumoniae were positive in 84 (55.3%) males and 68 (44.7%) females. Out of 50 patients 9 (18%) were found to positive for IgM M. pneumoniae antibodies of which four (44.4%) males and 5 (55.5%) females were positive. Our study observed that the gold particles were clustered on the filamentous extension of the tip of the cells. Out of 152 serum samples subjected to particle agglutination assay 138 (90.7%) were positive 1:320 titer, 9 were >1:80 and 3 showed titer was >1:40.Conclusion: We suggest that clinicians should consider empirical therapy of broad spectrum antibiotics therapy to cover these atypical pathogens to reduce the severity before obtaining the serological results. From our study, we also suggest electron microscopic and biochemical studies for better diagnosis of these pathogens.Key words: Atypical, community‑acquired pneumonia, electron microscope, gold labelin

    A Fiber-Based Laser Ultrasonic System for Remote Inspection of Limited Access Components

    Get PDF
    Surface and plate waves are commonly used to nondestructively inspect the near-surface region of a solid component for cracks and other defects due to, for example, structural fatigue. One particularly attractive method of generating and detecting such ultrasonic signals is laser based ultrasonics (LBU) [1]. In particular, because it is non-contact (i.e., does not require couplant), LBU can be implemented for inspection of limited access components using optical fibers, requiring only a small cross-sectional area for access. An example can be found in the inspection of internal surfaces of an aircraft wing as shown in Figure 1 where a contact method would obviously be difficult to apply. Furthermore, in cases where extremely high sensitivity is required, bandwidth reduction can be employed by concentrating the laser generated signal into a narrow frequency band

    Initial Energy Density of root s = 7 and 8 TeV p-p Collisions at the LHC

    Get PDF
    Results from the RHIC and LHC experiments show, that in relativistic heavy ion collisions, a new state of matter, a strongly interacting perfect fluid is created. Accelerating, exact and explicit solutions of relativistic hydrodynamics allow for a simple and natural description of this medium. A finite rapidity distribution arises from these solutions, leading to an advanced estimate of the initial energy density of high energy collisions. These solutions can be utilized to describe various aspects of proton-proton collisions, as originally suggested by Landau. We show that an advanced estimate based on hydrodynamics yields an initial energy density in s=7\sqrt{s}=7 and 8 TeV p+p collisions at LHC on the same order as the critical energy density from lattice QCD, and a corresponding initial temperature around the critical temperature from QCD and the Hagedorn temperature. The multiplicity dependence of the estimated initial energy density suggests that in high multiplicity pp collisions at the LHC, there is large enough initial energy density to create a non-hadronic perfect fluid.Comment: 18 pages, 4 figures. Accepted for publication in the Special Issue "Quark-Gluon Plasma in the Early Universe and in Ultra-Relativistic Heavy-Ion Collisions" of Universe (ISSN 2218-1997

    Pseudolaric acid B as a new class of microtubule destabilizing agent and an effective anti-tumor compound in vivo

    Get PDF
    published_or_final_versio

    The role of an interactive Greenland ice sheet in the coupled climate-ice sheet model EC-Earth-PISM

    Get PDF
    AbstractIce sheet processes are often simplified in global climate models as changes in ice sheets have been assumed to occur over long time scales compared to ocean and atmospheric changes. However, numerous observations show an increasing rate of mass loss from the Greenland Ice Sheet and call for comprehensive process-based models to explore its role in climate change. Here, we present a new model system, EC-Earth-PISM, that includes an interactive Greenland Ice Sheet. The model is based on the EC-Earth v2.3 global climate model in which ice sheet surface processes are introduced. This model interacts with the Parallel Ice Sheet Model (PISM) without anomaly or flux corrections. Under pre-industrial climate conditions, the modeled climate and ice sheet are stable while keeping a realistic interannual variability. In model simulations forced into a warmer climate of four times the pre-industrial CO2 concentration, the total surface mass balance decreases and the ice sheet loses mass at a rate of about 500 Gt/year. In the climate warming experiments, the resulting freshwater flux from the Greenland Ice Sheet increases 55% more in the experiments with the interactive ice sheet and the climate response is significantly different: the Arctic near-surface air temperature is lower, substantially more winter sea ice covers the northern hemisphere, and the ocean circulation is weaker. Our results indicate that the melt-albedo feedback plays a key role for the response of the ice sheet and its influence on the changing climate in the Arctic. This emphasizes the importance of including interactive ice sheets in climate change projections.</jats:p

    Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF

    Get PDF
    © 2016 BMJ Publishing Group Ltd & British Thoracic Society.Rationale Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. Methods We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. Results We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. Conclusions Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-ofmechanism trial of this agent is currently underway. Trial registration number NCT01725139, pre-clinical
    corecore