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the PPC policy. In this case, one approach is to identify a stable Decentralized H.,-Controller Design

service period and use it as a supervisor for another, more intuitive for Nonlinear Systems

(e.g., PCLB) policy. As a supervisor, the purpose of the PPC policy is

simply to guarantee stability of the system. In practice, the supervisingGuang-Hong Yang, Jianliang Wang, C. B. Soh, and James Lam
PPC policy is invoked when some measure of system performance

(e.g., the sum of the buffer levels) exceeds some preset threshold

(i.e., once the sum of FMS buffer levels grows beyond some preseﬁbstract—'rhis'paper considers the_d_ecentraliz_gd{m—controller de_sign
limit, a predefined, stable periodic service sequence is implementétﬁg.b'em for nonlinear systems. Sufficient conditions for the solution of

Next. note that in simulati tudies for th licies introd dh problem are presented in terms of solutions of Hamilton—Jacobi
€xt, note that In simulation studies for the policies introduce eft%qualities. The resulting design guarantees local asymptotic stability

we have uncovered some interesting points [5]. First, in attemptiagd ensures a predeterminedZ,-gain bound on the closed-loop system.
to formulate a general rule of thumb for determining the suitability . . . .

f PC control for a given EMS. we make the following observation: Index Terms—Decentr_aIlzed control, Hamilton—Jacobi inequality, non-
0 ] g . ' : g e .qrnear H, control, nonlinear system.
The less variance there is among processing rates along individual
paths, the better PC policies will perform (with respect to distributed
policies). The reason for this is that because PC policies mandate that I. INTRODUCTION

all buffers on a given path be processed at a single rate (the minimuny the area of the decentralized control of large scale systems,
processing rate of all buffers on the path), any buffers on the path thgimerous important advances have been accomplished in the past two
are able to be processed at a faster rate than the minimum procesgig¢hdes [9], [11]. Recently, the decentralizEd.-control problem
rate are constrained to be processed at a lower rate than they wagldjinear systems has been considered in [7], [8], [10], and [13].
be processed at in a distributed control scheme. In general, then, |fprparticular, Veilletteet al. [13] presented a decentralizeH..-
systems with very high processing rate “skew” along individual pathgentroller design procedure in terms of solutions of the modified
we may be wiser to choose a distributed policy. However, it may bggebraic Riccati equations, and the result has also been extended to
possible to choose paths intelligently so as to minimize the adveigigcrete-time linear systems [7]. In [8], another sufficient condition
affects of processing rate skew. for the decentralized ...-control problem is derived, under which the
Finally, we would like to emphasize that PC policies will nofgecentralized solution can be constructed from the central controller
yield stability for all FMS that would be stable under a distributedo|ytion from the standard..-control theory in [2].
scheduling approach where the FMS satisfies a capacity constrainin recent years, the problem of central controller design to solve the
For example, if there is a high amount of “processing rate skew” along__-control problem (or in short, the central..-control problem)
the paths PC policies may not be stable and a distributed policy M@y nonlinear systems has been extensively investigated by several
be. authors [1], [3]-[6], [12]. In particular, Van der Schaft [12] has shown
that the solution of theéd..-control problem via state feedback can
be determined from the solution of a Hamilton—Jacobi equation (or
inequality), which is the nonlinear version of the Riccati equation
[1] J. R. Perkins and P. Kumar, “Stable, distributed, real-time schedulifgl the corresponding lineat ..-control problem. In the case of
of flexible manufacturing/assembly/disassembly systet®=EE Trans. measurement feedback, a set of sufficient conditions has also been
Automat. Contr. vol. 34, pp. 139-148, Feb. 1989. given in [1], [4], and [6] in terms of the solutions of a pair of

[2] P. Kumar and T. J. Seidman, “Dynamic instabilities and stabilizatio : _ L. o . .
methods in distributed real-time scheduling of manufacturing systemspi’am”tOn Jacobi inequalities, and the necessity of these sufficient

IEEE Trans. Automat. Contrvol. 35, pp. 289-298, Mar. 1990. conditions has been discussed in [1] and [5].

[3] S.H.Luand P. Kumar, “Distributed scheduling based on due dates andIn this paper, we consider the decentraliZ€d,-control problem
buffer priorities,”|[EEE Trans. Automat. Contrvol. 36, pp. 1406-1416, for nonlinear systems by using the Hamilton—Jacobi inequality ap-
Dec. 1991. ; ; ; ; iati

I . ) roach. The results given in this paper are extensions of existin

[4] C. Humes, Jr., “A regular stabilization technique: Kumar—Seidmal It the li dg trali éﬂxp pt | bl 131, [8 d 9
revisited,”|EEE Trans. Automat. Contrvol. 39, pp. 191-196, Jan. 1994. resu_ S on the linear decentraliz -control problem [ - 1, (8] an

[5] K. M. Passino and K. L. Burges§tability Analysis of Discrete Event Nonlinear centrall.-control problem [4]. The paper is organized
Systems New York: Wiley, 1998. as follows. The system description and problem statement are given

in Section Il. The main results are given in Section Ill, followed by
a numerical example in Section IV to illustrate the design proce-
dure and the effectiveness of the proposed method. Finally, some

concluding remarks are given in Section V.
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Il. PROBLEM STATEMENT

Consider a nonlinear systel described by equations of the form Fle) =

3o —f(b)+g1 LU0+ZJ21(J)U/1 (l)
z=[hi(x) w u,q]T )
yi = hoi(x)+w;, i=1,---q ®)

wherez is a state vector defined in a neighborha¥dof the origin
in R"; the u;'s are the local control inputs witle; € R™¢; the
y;'s are the local measurement with € RP%; wo and thew;’s are

square-integrable disturbances; arid an output to be regulated. The

functionsf(z), g1 (), hi(x), goi(z), andhai(x) (i = 1,---,q) are

579
F&) + g1 (€)ar (&) + g2(E)a2(€1) — g2(&1)az(€)
f(&2) + g1(&2)aa( é2)+92(é Y2 (§2) — g2(&2)@=(€)
F(€y) + g1 (§) i (&) + g0 (éq v2(€q) — 92(&4)a2(6)
(11)
where¢ = [¢] & €M is anng dimensional vector with

& € R"™, and define the following matrix which is to be determined
later:

L(€) = diag{L1(&1), La(&2), - Lq(€) }.
Li(&) € B™*Pi, & e R". (12

Then the following theorem presents a sufficient condition for the

all known smooth mappings of appropriate dimensions, defined dalution of theDHCD problem and gives a controller of ordet.

X with f(0) =0, h1(0) =0, andho;(0) =0 (i = 1,- q). For

convenience, we denote
T T 71T T T 7T

11_[u1 Uy - uq] , !I—[!Il EEREE yq]
T T T
We = [wo wy wq]
(lz(r) = [(121(7“) (lu(r) .(JZq(-T)]
ho(z) = [hfl () hi)(t) hzfq(x)]T

The decentralized control structure constrains each control imput

Theorem 3.1: Consider the syste® described by (1)—(3) and a
positive constant;. Suppose that the following conditions hold.
1) The pair{f, h1} is locally detectable.
2) There exists aC” positive definite functionV/(z), locally
defined in a neighborhood af = 0 and vanishing at = 0,
which satisfies the Hamilton—Jacobi inequality

Ho(2, V)2V, f(”)+’1i[(”)hl( )+ 7 g (@) (@)
— s (2)az(x) <0 (13)

to be generated by an independent controller which uses only the

corresponding measurement

Decentralized H..-Controller Design (DHCD) Problem:Given
the systemX described by (1)—(3) and a positive constantfind
controllers of the following form:

& = a; (()-i—b(f)
u; = ¢ (&), =1,

{i € R™ (4)

®)

such that the resulting closed-loop system is locally asymptotically

stable and has a locdl; gain less than or equal to.

The following notion of detectability from [3] will be used in the

sequel.

Definition 2.1: Supposef(0) = 0 and~(0) = 0. The pair{f,h}
is said to belocally detectablef there exists a neighborhodd of
the pointz: = 0 such that, ifz(¢) is any integral curve of = f(x)
satisfying z(0) € U, then h(z(t)) is defined for allt > 0 and
h(x(t)) = 0 for all ¢ > 0 implies lim; .. z(t) = 0.

For some fundamental notions and results of nonlidéar-control
theory, the reader is referred to [4] or [12].

. MAIN RESULTS

whereV, is the Jacobian matrix of (z).

3) There existn x p; matrix-valued functionsL;(¢;) (i =
1,---,q) such that the following Hamilton—Jacobi inequality
admits aC? positive definite solutionp(¢) that is locally
defined in a neighborhood @f= 0 and vanishing af = 0

Hao(£.QF)
= Qelf(€) = L(Oh2()] + as (sm(ﬁ)

+ Qe (O3 (©QF + T3 QLOL (O <0

(14)
Furthermore, the Hessian matrix & (€. Qf)
lar at¢ = 0.

Then there exist controllers of the form (4) and (5) that solves the
DHCD problem for the systenx. Furthermore, a particular such a
controller of orderng is given by

& = f(&) + 91 (&)an (&) + g2(€) a2 (&) + Li(&i) (yi — hai(&))
(15)
(16)

is nonsingu-

“"':(}"2’:(57‘)1 7:1~,(]

The main results are presented in the following two subsections-The following preliminaries are required in the proof of
Section IlI-A gives a solution to th®HCD problem, assuming that Theorem 3.1.

an observer gain is given. Then, in Section IlI-B, two methods are By applying the controllers given by (15) and (16) to the system

given for the observer gain design.

A. A Solution to the DHCD Problem

For the nonlinear syster described by (1)—(3) and a smooth
R" — Ry [with its Jacobian matrix

positive definite functiorl” :

being V.. (x)], denote
ar(x) = i%%qlT(r)Y’lT(r) (6)
02(2) = — 29} @)V (2) = oy (2) b @) @
32(€) = [a31(&)  ada(&) ab,(6)]" €RT (8
gl(ﬁ) =d1dg{gl(£1).g1(£z),,gl(ﬁq)} (9)
ha(€) = diag{ha1(&1), haa(&2), -+, hag(Eq)} (10)

3 of (1)—(3), the resulting closed-loop systeéh is described by

Yoo Ze = fe(we) + ge(@we)we 17
c=[1{(x) adi(&) ady(&) as(&)]" (18)

wherez. = [27 ¢7]7 is of dimensionn + ng, and we have the
equations shown at the bottom of the next page. Denote (19) and
(20), as shown at the bottom of the next page. Then we have the
following lemma.

Lemma 3.2: LetW (z.) = Q(z—¢), wherez = [2* --- 2"]" €
R™ with « € R™. Then under the assumptions of Theorem 3.1, there
exists a neighborhood af. = 0 in which the following inequality
holds:

WooFelre) + B Geohe(we) + 5 Wooge(re)gl (xe) WS, <0

(1)
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Proof: Lete = — ¢ andI, = [I,---,I]7 € R"™*" where Proof of Theorem 3.1:A straightforward calculation using (13),
I € R™*" is the identity matrix. TheWV,_ = (Q.(e)I.,—Q.(e)). (16), (6), and (8) yields the following inequality:

Note that VoLF () + g1 (2)wo + ga ()] 4+ [[ha ()12 + [lul?

G2()a2(€) =Y gai(w)ani(&) =7 lwoll* = 5*lwll?
=1 il - . . 9 .
= (g2(2) = 92(¢,))2 (&) < D llazi(€) = ani(@)l* = 5w = s ()" = 57 [lwl]”
+p(E)F(E), G=L-o.q. - (24)
By (17), (19) and (20), we have Let
He, ) U(xe) =V(x)+ W(x.),
= W, Folwe) + hE (2 )he (2e) + 4}9 Wo. ge(we)gT (xe)WE ar(e) = [laa(@)]" 0 - 0"
2
Fla) + g (x)ar(x) — F(&) — g1 (E)ar (&) Then, by using (17)—(19), (24), and Lemma 3.2, it follows that
= Qc(e) : U (fe(we) + ge(ywe) + 12017 = 47 {|we ||
fl@) + gi(@)ar(a) = f(&) — g1(€g)n(&y) = Vel f (@) + g1 (2)wo + g2 (2)@2(E)] + W, [fe(we)
(g2(2) = g2(&1))a2(§)+ g2(&1)@2(€) — g2(&1 )2 (&) + ge(r)wa ] + 12017 = 7 [lwe])?
+Q(e) . 2 2 2
(92(2) = 92(64)) A2 (€) F 02(&) 2 (€) = 92 (€ )22 (€4) : E lzi(6e) = ezl = lwo = )l
I L Pl 4 W [Fre) + ge(rews]
~ @t PN R = 2l — a7 = 7 ll? + B ()b )
Faale) = feal&) - WL () 4+ g (e (w. — 61 ()]
X [@2(Z) — @2(8)] + WQe(E)Icgl ('1)911 (l’)Ij Qf (e) < —ﬁ/2||u)0 — 0:1(;r)||2 — 'y2||m||2 + W’Iefe(me)
+ 22 QUOLOLT Q! (0 22) + e (ahelee) & gz Wecgelec)ge (e W,
where L(-) is as defined in (12). From the above equality, it is _;; ||_we‘— m}(;-)”‘ bt
easy to see thaH(O, JIT) =0, [GHa(?.l')]e:O = 0. ThUS, H(e,at) - '.relfﬁ(le) + h. (lr) re(-l"e)
can be expressed & (e,x) = e’ R(e,z)e for some continuous + W ge(ze)gl (xe)W, <0. (25)
matrix-valued functiorR(e, ). By (14) and (22), we hav&(0,0) = by

[82H°‘°(§’QZ)]5_0 Since the Hessian matrix @fu, (¢ Qg) is nega- This shows thatl’(z.) is a storage function for the closed-loop
6 =0 do bl

: 2 N2 o112
tive definite, the function (e, x) is nonpositive in a neighborhood SYStemXe, with respect to the supply rate = ~ lJwell™ = Nl=11"
of (e,#) = (0,0), which further implies that the inequality (21) This further implies that the systed. has anL, gain less than or

holds. 0 equal toy. Let w. = 0. Then from inequality (25), we have
Lemma 3.3: Under the assumption 3) of Theorem 3.1, the equi- dU(x.(t)) . . 9 _ 9
librium E=0 of the system T - L/-Tefﬁ(me) < _||h1(r(f))|| - ||(‘2(E(f))” . (26)
£ = F(&) = L()ha(€) (23) Since U(x.) is positive definite, it follows Fhat the equilibrium
(z,&) = (0,0) of the closed-loop systerX. is stable. To prove
is locally asymptotically stable. asymptotic stability, note that any trajectory satisfyﬁ%(,f—e) =0is
The proof is straightforward and omitted. necessarily a trajectory of = f(x) + g2(x)az(§) such thate(t) is

 f@)+ 2 gei(@)ani()
Fle) = FE) + g (&)ai(&) + g2(&)aa (&) — Li(&)hai (&) + Li(&1) hai (o)

F(€e) + g1(Eg)an(&q) + g2(&g) ez (&1) = Lq(€q)h2q(€q) + Ly(€q)h2y ()
ge(fe) = dia‘g{gl('r)* Ll(El)a T LQ(EQ)}

Felwe) = fe(e) + [l (@)aa ()" 0 -~ 0"
fl@) + gi(x)an(x) + X1, gai(@)aai (&)
F&) + g1(&)an(&r) + g2(&1)az(€1) — Li(&)ha1(&1) + Li(&1)ha1 (@)

(19)

FE) + ()01 (€0) + g(E0)an(€) — Lo(€g)hag(€q) + Lo(Eq)hng ()
he(ae) = [ar () — a1 (€1) o0 ang(®) — ang(€,)]" (20)
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bounded, and; (z(¢¥)) = 0 anda2(§) = 0 for all ¢ > 0. From the Then by using Theorem 3.1, we have the following corollary which
detectability of the paif f, 21}, it follows thatlim:—.. (t) = 0. is an extension of Theorem 2.1 in [8] for the lind2HCD problem.
Thus, thew-limit set of such a trajectory is a subset of Corollary 3.5: Suppose that assumptions 1) and 2) of Theorem 3.1
) _ hold, and that the local observer gaibg¢;), i = 1,2,---, ¢ givenin
A[: . r = e ) = . N .,a 9 .
{(z.8) rw =0,02(6) = 0} (28) are such that the Hamilton—Jacobi inequality (14) h&g docal
Any initial condition on thisw-limit set yields a trajectory in which positive definite solutior)(¢) in a neighborhood of = 0, vanishing
w(t) = 0 for all t > 0, while from (17) anda:(£) = 0, &(t) is a at¢ = 0, and the Hessian matrix dfa. (¢, Q¢ ) is nonsingular at
trajectory of & = 0. Then the controller given by (15) and (16) with the above
: oz TN RN TN (£ observer gains solves tlEHCD problem for the nonlinear systeB.
¢ = fol&) = L{O2(8) = f(§) = L(Oh=(8) B.2 The Second MethodNext, we present the second approach to

where the observer gain design. Sin¢éx) andho;(z) (i = 1,---,¢) are
FED) + (&) (&) + g2(€1)a2(E1) smooth functions withf(0) = 0 and.;(0) = 0, there exist smooth
B FlE) + (€)1 (€2) + g2(E2)aa(E2) matrix-valued functionsd(x) andCz;(z) (i = 1,---, ¢) such that
fo(€) = :
: ’ f(z) = A(2)=, hai(z) = Cyi(x)e. (29)
f(&a) + g1(&g) a1 (&) + 92(Eg) 2 (&q)
From Lemma 3.3, it follows thdiim ... £(t) = 0 and by the invari-  1heorem 36 Und%r conditions 1) and 2) of ’;I'heor(_em 3.1, we
ance principle, the closed-loop systé is locally asymptotically assume thal’. = 2z~ P(x) with P(x) being aC” matrix-valued
stable. O function. Furthermore, we assume that [in place of 3) of Theorem 3.1]

Remark 3.4: Theorem 3.1 presents an approach to solve tfiere exists aC’ matrix-valued functiong(¢), locally defined and
DHCD problem for nonlinear systems. ¢f = 1, then Theorem 3.1 nonsingular in a neighborhood ¢f= 0, of the formt
becomes [4, Lemma 3.2], which is a solution to the cenfial,

T, T, . T,
control problem for the systenX. It should be noted that the ﬁl((%)) sz((é)) qugg
inequality (14) in Theorem 3.1 still contains undetermined observqr(g) — 21. ”_ ? Zq_ Ti(&) € R
gainsL;(¢;)’s. The problem of how to design these observer gains : : - :
will be treated in the next subsection. T (&) Tg(&) -+ Tue(&q)
(30)
B. Observer Gain Design
Now we look at how to design these observer gamgé;), that satisfies the matrix inequality
i = 1,2,---,q. Two methods will be presented. The first method , T < T , ST oy 1o e\ T
makes use of the centralized observer design result in [4], ang(E)A;‘ (©) ":{ic(f)? (E)T'i' T(E)i\u (KT (&)
the idea is similar to that of Paz [8] for linear local observers. — 7 T(&)C™ (§)C(OT (&) ++7[T(E)
But our result here is for nonlinear systems. The second method _ CL(OV(ENT(E) — T Ty 1 <0
gives a decentralized observer design in terms of solutions to a (OIC OO o8] 72 2031 (&)
matrix inequality that implies the Hamilton—Jacobi inequality (14) (31)

in condition 3) of Theorem 3.1.

B.1 The First Method: First, we review the result for nonlinear where g (£) is as defined in (9), and there exists a positive definite
centralized observer design of [4]. Suppose that the assumptidagction Q(¢) with Q(0) = 0 such thatQe = 26" 7' (¢) where
1) and 2) of Theorem 3.1 hold. Suppose that there exists’a

positive definite functiors (), locally defined in a neighborhood of 17 (&) = diag{T11(& ). T2a(&2). -+ T4q(&a) } (32)
= = 0 and vanishing at = 0, which satisfies the Hamilton-Jacobi  A.(¢) = diag{A(&), A(&2), - -+, A(&)}
inequality 92 (1)
H,(x, SJLT) 2 S 0f () 4 gr(w)an (@)] + ol (1) az(a) — (liag{g;(&)PT(&),gﬁzT.Z(Ez)PT(E.z),...,
() ha(e) + g Sen(@)gf (15T <0 Lo2(6a) ]

. ! 924(E) P (&)} (33)
and the Hessian matrix off,(«x,S; ) is nonsingular ate = 0. - ) 1 T, oT ” "
Suppose also that there exists’d matrix-valued functionL(z) € Ale) = Alw) + ngl(l)gl (@)P"(2) = g2(2)g2 () P () (34)
R with p = 30 pi such that K.(6) = diag{—gh (6) PT (61). ~gha (&) P (&)

Sy L(x) = 29713 (x). (27) — 924(€) P (€)} (35)
Then, from in [4, Th. 3.1], the centralized controller C(8) = diag{C2(&1), Co2(€2),+ -, Cag (&)} (36)
= fn)+ g (mai(n) + ga(naz(n) + Ln)(y — hz(n)) Denote
w=as(n) ) 7
L(&) =" Tn(&)C" (6). (37

locally stabilizes the systent¥ and guarantees that the resulting
closed-loop system has dr gain less than or equal to.

For decentralized nonlinear control, we have the following resu
Note that, in the decentralized cask(x) = [Li(x) La(x) >
L,(2)] with L;(x) € R"™?:, i = 1,---,q, and condition (27) ~~
becomes

I'[hen the controller given by (15) and (16) with the observer gain as
specified by (37) and (12) solves tB#HCD problem for the system

- INote the special structure if'(¢) that the diagonal entrie%;;(&;) is a
SeLi(x) = 29" hyi (), i=1,---.q. (28) function of¢; only, noté!



582 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 3, MARCH 1999

Proof: From inequality (32), and definitions (32) and (37), it TABLE |
follows that HERE “—" | NDICATES THAT THE SYSTEM BECOMES UNSTABLE
T([Ac(&) = LEOCE] +[Ac(§) = LEOCEOITT (&) Y | A=01]A=017] A=018| A=023
+TOENOKAOT () + 5003 ©) pnear_J 01720 1 0792 | -
) v Nonlinear || 0.1726 0.1728 0.1728 0.1767
+ 5 LIEOLT () <0
/
which further implies that s=lor ah w ows]’
[A:(6) = LEOCETIT O] + T OA(6) - LETE)) y= [2f12+ ?l} + { }
o 1 wi2

+ EXOKA9) + =T (©a (O3 ©I @)
/ which is of the formX in (1)—(3). Henceg = 2. We will design a
+ %T“ (OLELT (T (9] <o. decentralized controller for the above system by using Theorem 3.1
v and Corollary 3.7.
By using definitions (29) and (33)—(36), and by comparing with For this example, it is easy to check th@f,n.} is locally
Hao (€, Qg) in (14), we can see that the above strict inequality impliedetectable. By solving (13), the following positive definite solutions
that condition 3) of Theorem 3.1 is satisfied. Also, the nonsingularigge obtained with a minimum value of vz = 0.48 :
of the Hessian matrix offg, (&, QET) is implied by the above strict

T — 19.4.2 rd ey e 2
inequality. Thus, the proof is completed from Theorem 3.1. O V() = 0.3642a; _‘0'03‘ 06"“1*"2 +0.043 313 ‘
It should be noted that, apart from the special structure as men- —0.0444247 + 0.1324a7 25 — 0.088 0841 42
tioned in the footnote to Theorem 3.B(¢) must satisfy the matrix +0.045 3623 + 0.16122F — 0.78422% 2,

inequality (31) and must also be related to a gradient function
lie., Qe = 267T7'(&)]. In general, T(¢) may not be symmetric.

Therefore, the task of solving for such7a¢) is indeed a nontrivial the ohserver gain is taken as linear by solving (38) of Corollary 3.7
one. But a constant solution (which renders a linear observer gain)

can be obtained easily as follows. = {Iﬂ 0 } B {0.3645 0.4029 0 0 !

+2.10512723 — 2.19382125 + 1.177221.

Corollary 3.7: Under conditions 1) and 2) of Theorem 3.1, we L= 0 Lo 0 0 0.6231 —=0.2519
assume thai’, = 227 P(«) with P(x) being aC* matrix-valued
function. Furthermore, we assume that [in place of 3) of Theorem 3/inally the controller is given by (15) and (16) with; (&) and
there exists a symmetric positive definite matfixthat satisfies the a2(&:) as defined in (6) and (7).
matrix inequality As there is no viable method for computing tée.-norm of an

_ _ o _ . o affine nonlinear system, the following approximdie-gain yimax is
TAT(0) + A (0)T + TK! (0)K.(0)T — ~*TC"(0)C(0)T y g app gain?

) computed:
+ [T — Tp]CT(0)C(0)[T — Tn] + ngl(o)gf(o) <0 (398)

where - i >0 Jo [wd(m) + w3 (1) + wiy(7)]dr
1:11 1_712 '1:1(;
Ty Toy --- Toy _ o _ If the H..-norm of the closed-loop system ig., then obviously
. | To=diag{Tn T Tagl 0 < qmar < e <

; ; R In computer simulations, the plant disturbance(t) is taken as
qu g - Ty wo(t) = A - sin(4nt), the measurement noise;;(¢) is taken as a
T. =T € R"*". (39) square wave of an amplitudeA and a frequency 10 Hz, and»(t)

is taken as a saw-tooth wave of an amplitulend a frequency of

7 Hz. Here the amplitudel is variable. The initial conditions of the
L= »,?TDC'T(())_ (40) system and the controller are all set to zero. The simulation results
] ) are given in Table 1. Here, “Nonlinear” refers to the controller that we
Then the controller given by (15) and (16) with the above observgesigned just now, and “Linear” refers to the controller after dropping
gain in (40) solves the DHCD problem for the syst&mn all nonlinear terms in our nonlinear controller (namely, the controller

Remark 3.8: Theorem 3.6 presents a design method for Ioc%ly using the linear methods of [13]).
observer gaing;(¢i) (¢ = 1,---, ¢), which is based on the existence "t can pe seen from Table | that, for small disturbances/noises
of solutions of the form (30) to the nonlinear matrix inequality (31)(A = 0.1), the linear and the nonlinear controllers give the same
From Corollary 3.7, the linear local observer gains can be deSiQ”&€sed-loop disturbance attenuation... Also the L,-attenuation
by solving a linear matrix inequality. These results generalize 1o s less than the designed valuef = 0.48. When the distur-
nonlinear decentralized control systems the results given in [13] fghnces/noises are increasedite= 0.18, the linear controller fails to
linear decentralized control systems. The results in [13] are givendgpilize the system, but the nonlinear controller not only stabilizes
terms of solutions of modified algebraic Riccati equations. the system but also provides adequate disturbance attenuation. In
fact, the nonlinear controller can meet the design specification for a

B J J [0+ 20) 4 30) + 20 dr

T=

Denote

IV. AN EXAMPLE disturbance level of up tol = 0.23.
Consider the following nonlinear system: Of course, the nonlinear method presented in this paper is a
) local one. This is confirmed by the simulation result that if the
= {_2*"1 "; "”14”2}27 + {1 :|“,’0 + {0 1} {”1} disturbance/noise level is increased beyohe- 0.23, the nonlinear
T2 o L1 us controller fails to stabilize the system.
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V. CONCLUSION A Methodology for the Design of Optimal Traffic

This paper presents a sufficient condition for thelCD prob- Shapers in Communication Networks
lem for nonlinear systems. The resulting controller guarantees local
asymptotic stability and provides a predetermidedgain bound on
the closed-loop system. Two design methods of the local observers
are given: one is based on the centralized observer gain and anothg{)stract_The authors consider the problem of optimally regulating

one is related to the solution of the matrix inequalities. The resulise source traffic in a communication network to simultaneously satisfy
are extensions of those in [8] and [13] for the case of linear systenasfinite number of affine burstiness constraints. They prove that an
optimal solution is a series connection of correspondingly dimensioned

“leaky buckets.” They propose a simple “fork-join” implementation of
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