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the PPC policy. In this case, one approach is to identify a stable
service period and use it as a supervisor for another, more intuitive
(e.g., PCLB) policy. As a supervisor, the purpose of the PPC policy is
simply to guarantee stability of the system. In practice, the supervising
PPC policy is invoked when some measure of system performance
(e.g., the sum of the buffer levels) exceeds some preset threshold
(i.e., once the sum of FMS buffer levels grows beyond some preset
limit, a predefined, stable periodic service sequence is implemented).

Next, note that in simulation studies for the policies introduced here
we have uncovered some interesting points [5]. First, in attempting
to formulate a general rule of thumb for determining the suitability
of PC control for a given FMS, we make the following observation:
The less variance there is among processing rates along individual
paths, the better PC policies will perform (with respect to distributed
policies). The reason for this is that because PC policies mandate that
all buffers on a given path be processed at a single rate (the minimum
processing rate of all buffers on the path), any buffers on the path that
are able to be processed at a faster rate than the minimum processing
rate are constrained to be processed at a lower rate than they would
be processed at in a distributed control scheme. In general, then, for
systems with very high processing rate “skew” along individual paths,
we may be wiser to choose a distributed policy. However, it may be
possible to choose paths intelligently so as to minimize the adverse
affects of processing rate skew.

Finally, we would like to emphasize that PC policies will not
yield stability for all FMS that would be stable under a distributed
scheduling approach where the FMS satisfies a capacity constraint.
For example, if there is a high amount of “processing rate skew” along
the paths PC policies may not be stable and a distributed policy may
be.
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Decentralized -Controller Design
for Nonlinear Systems

Guang-Hong Yang, Jianliang Wang, C. B. Soh, and James Lam

Abstract—This paper considers the decentralizedH1-controller design
problem for nonlinear systems. Sufficient conditions for the solution of
the problem are presented in terms of solutions of Hamilton–Jacobi
inequalities. The resulting design guarantees local asymptotic stability
and ensures a predeterminedL2-gain bound on the closed-loop system.

Index Terms—Decentralized control, Hamilton–Jacobi inequality, non-
linear H1 control, nonlinear system.

I. INTRODUCTION

In the area of the decentralized control of large scale systems,
numerous important advances have been accomplished in the past two
decades [9], [11]. Recently, the decentralizedH1-control problem
for linear systems has been considered in [7], [8], [10], and [13].
In particular, Veilletteet al. [13] presented a decentralizedH1-
controller design procedure in terms of solutions of the modified
algebraic Riccati equations, and the result has also been extended to
discrete-time linear systems [7]. In [8], another sufficient condition
for the decentralizedH1-control problem is derived, under which the
decentralized solution can be constructed from the central controller
solution from the standardH1-control theory in [2].

In recent years, the problem of central controller design to solve the
H1-control problem (or in short, the centralH1-control problem)
for nonlinear systems has been extensively investigated by several
authors [1], [3]–[6], [12]. In particular, Van der Schaft [12] has shown
that the solution of theH1-control problem via state feedback can
be determined from the solution of a Hamilton–Jacobi equation (or
inequality), which is the nonlinear version of the Riccati equation
for the corresponding linearH1-control problem. In the case of
measurement feedback, a set of sufficient conditions has also been
given in [1], [4], and [6] in terms of the solutions of a pair of
Hamilton-Jacobi inequalities, and the necessity of these sufficient
conditions has been discussed in [1] and [5].

In this paper, we consider the decentralizedH1-control problem
for nonlinear systems by using the Hamilton–Jacobi inequality ap-
proach. The results given in this paper are extensions of existing
results on the linear decentralizedH1-control problem [13], [8] and
nonlinear centralH1-control problem [4]. The paper is organized
as follows. The system description and problem statement are given
in Section II. The main results are given in Section III, followed by
a numerical example in Section IV to illustrate the design proce-
dure and the effectiveness of the proposed method. Finally, some
concluding remarks are given in Section V.
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II. PROBLEM STATEMENT

Consider a nonlinear system� described by equations of the form

�: _x = f(x) + g1(x)w0 +

q

i=1

g2i(x)ui (1)

z = [h1(x) u1 � � � uq]
T (2)

yi = h2i(x) + wi; i = 1; � � � q (3)

wherex is a state vector defined in a neighborhoodX of the origin
in Rn; the ui’s are the local control inputs withui 2 Rm ; the
yi’s are the local measurement withyi 2 Rp ; w0 and thewi’s are
square-integrable disturbances; andz is an output to be regulated. The
functionsf(x); g1(x); h1(x); g2i(x); andh2i(x) (i = 1; � � � ; q) are
all known smooth mappings of appropriate dimensions, defined in
X with f(0) = 0; h1(0) = 0; andh2i(0) = 0 (i = 1; � � � ; q). For
convenience, we denote

u = u
T
1 u

T
2 � � � u

T
q

T
; y = y

T
1 y

T
2 � � � y

T
q

T

we = w
T
0 w

T
1 � � � w

T
q

T

g2(x) = [g21(x) g22(x) � � � g2q(x)]

h2(x) = h
T
21(x) h

T
22(x) � � � h

T
2q(x)

T
:

The decentralized control structure constrains each control inputui
to be generated by an independent controller which uses only the
corresponding measurementyi.

DecentralizedH1-Controller Design (DHCD) Problem:Given
the system� described by (1)–(3) and a positive constant, find
controllers of the following form:

_�i = ai(�i) + bi(�i)yi; �i 2 R
v (4)

ui = ci(�i); i = 1; � � � ; q (5)

such that the resulting closed-loop system is locally asymptotically
stable and has a localL2 gain less than or equal to.

The following notion of detectability from [3] will be used in the
sequel.

Definition 2.1: Supposef(0) = 0 andh(0) = 0. The pairff; hg
is said to belocally detectableif there exists a neighborhoodU of
the pointx = 0 such that, ifx(t) is any integral curve of_x = f(x)
satisfying x(0) 2 U , then h(x(t)) is defined for allt � 0 and
h(x(t)) = 0 for all t � 0 implies limt!1 x(t) = 0.

For some fundamental notions and results of nonlinearH1-control
theory, the reader is referred to [4] or [12].

III. M AIN RESULTS

The main results are presented in the following two subsections.
Section III-A gives a solution to theDHCD problem, assuming that
an observer gain is given. Then, in Section III-B, two methods are
given for the observer gain design.

A. A Solution to the DHCD Problem

For the nonlinear system� described by (1)–(3) and a smooth
positive definite functionV : Rn ! R+ [with its Jacobian matrix
being Vx(x)], denote

�1(x) =
1

22
g
T
1 (x)V

T
x (x) (6)

�2(x) = �
1

2
g
T
2 (x)V

T
x (x) = �

T
21(x) � � � �

T
2q(x)

T
(7)

��2(�) = �
T
21(�1) �

T
22(�2) � � � �

T
2q(�q)

T
2 R

q (8)

�g1(�) = diagfg1(�1); g1(�2); � � � ; g1(�q)g (9)
�h2(�) = diagfh21(�1); h22(�2); � � � ; h2q(�q)g (10)

�f(�) =

f(�1) + g1(�1)�1(�1) + g2(�1)�2(�1)� g2(�1)��2(�)
f(�2) + g1(�2)�1(�2) + g2(�2)�2(�2)� g2(�2)��2(�)

...
f(�q) + g1(�q)�1(�q) + g2(�q)�2(�q)� g2(�q)��2(�)

(11)

where � = [�T1 �T2 � � � �Tq ]
T is an nq dimensional vector with

�i 2 Rn, and define the following matrix which is to be determined
later:

�L(�) = diagfL1(�1);L2(�2); � � � ; Lq(�q)g;

Li(�i) 2 Rn�p ; �i 2 Rn: (12)

Then the following theorem presents a sufficient condition for the
solution of theDHCD problem and gives a controller of orderqn.

Theorem 3.1: Consider the system� described by (1)–(3) and a
positive constant. Suppose that the following conditions hold.

1) The pairff; h1g is locally detectable.
2) There exists aC2 positive definite functionV (x), locally

defined in a neighborhood ofx = 0 and vanishing atx = 0,
which satisfies the Hamilton–Jacobi inequality

Hs x; V
T
x Vxf(x) + h

T
1 (x)h1(x) + 

2
�
T
1 (x)�1(x)

� �
T
2 (x)�2(x) � 0 (13)

whereVx is the Jacobian matrix ofV (x).
3) There existn � pi matrix-valued functionsLi(�i) (i =

1; � � � ; q) such that the following Hamilton–Jacobi inequality
admits aC2 positive definite solutionQ(�) that is locally
defined in a neighborhood of� = 0 and vanishing at� = 0

Hdo �; Q
T
�

Q�[ �f(�)� �L(�)�h2(�)] + ��T2 (�)��2(�)

+
1

42
Q��g1(�)�g

T
1 (�)Q

T
� +

1

42
Q�

�L(�)�LT (�)QT
� � 0:

(14)

Furthermore, the Hessian matrix ofHdo(�;Q
T
� ) is nonsingu-

lar at � = 0.

Then there exist controllers of the form (4) and (5) that solves the
DHCD problem for the system�. Furthermore, a particular such a
controller of ordernq is given by

_�i = f(�i) + g1(�i)�1(�i) + g2(�i)�2(�i) + Li(�i)(yi � h2i(�i))

(15)

ui = �2i(�i); i = 1; � � � ; q: (16)

The following preliminaries are required in the proof of
Theorem 3.1.

By applying the controllers given by (15) and (16) to the system
� of (1)–(3), the resulting closed-loop system�c is described by

�c: _xe = fe(xe) + ge(xe)we (17)

z = h
T
1 (x) �

T
21(�1) �

T
22(�2) � � � �

T
2q(�q)

T
(18)

wherexe = [xT �T ]T is of dimensionn + nq, and we have the
equations shown at the bottom of the next page. Denote (19) and
(20), as shown at the bottom of the next page. Then we have the
following lemma.

Lemma 3.2: LetW (xe) = Q(�x��), where�x = [xT � � � xT ]T 2
Rnq with x 2 Rn. Then under the assumptions of Theorem 3.1, there
exists a neighborhood ofxe = 0 in which the following inequality
holds:

Wx
�fe(xe) + h

T
e (xe)he(xe) +

1

42
Wx ge(xe)g

T
e (xe)W

T
x � 0:

(21)



580 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 44, NO. 3, MARCH 1999

Proof: Let e = �x � � and Ic = [I; � � � ; I]T 2 Rnq�n where
I 2 Rn�n is the identity matrix. ThenWx = (Qe(e)Ic;�Qe(e)).
Note that

g2(x)��2(�) =

q

i=1

g2i(x)�2i(�i)

= (g2(x)� g2(�j))��2(�)

+ g2(�j)��2(�); j = 1; � � � ; q:

By (17), (19) and (20), we have

H(e; x)

= Wx
�fe(xe) + h

T
e (xe)he(xe) +

1

42
Wx ge(xe)g

T
e (xe)W

T
x

= Qe(e)

f(x) + g1(x)�1(x)� f(�1)� g1(�1)�1(�1)
...

f(x) + g1(x)�1(x)� f(�q)� g1(�q)�1(�q)

+Qe(e)

(g2(x)�g2(�1))��2(�)+g2(�1)��2(�)�g2(�1)�2(�1)
...

(g2(x)�g2(�q))��2(�)+g2(�q)��2(�)�g2(�q)�2(�q)

�Qe(e)�L(�)

h21(x)� h21(�1)
...

h2q(x)� h2q(�q)

+ [��2(�x)� ��2(�)]
T

� [��2(�x)� ��2(�)] +
1

42
Qe(e)Icg1(x)g

T
1 (x)I

T
c Q

T
e (e)

+
1

42
Qe(e)�L(�)�L

T (�)QT
e (e) (22)

where �L(�) is as defined in (12). From the above equality, it is
easy to see thatH(0; x) = 0; [ @H(e;x)

@e
]e=0 = 0. Thus,H(e; x)

can be expressed asH(e; x) = eTR(e; x)e for some continuous
matrix-valued functionR(e; x). By (14) and (22), we haveR(0; 0) =

[
@ H (�;Q )

@�
]�=0. Since the Hessian matrix ofHdo(�; Q

T
� ) is nega-

tive definite, the functionH(e; x) is nonpositive in a neighborhood
of (e; x) = (0; 0), which further implies that the inequality (21)
holds.

Lemma 3.3: Under the assumption 3) of Theorem 3.1, the equi-
librium � = 0 of the system

_� = �f(�)� �L(�)�h2(�) (23)

is locally asymptotically stable.
The proof is straightforward and omitted.

Proof of Theorem 3.1:A straightforward calculation using (13),
(16), (6), and (8) yields the following inequality:

Vx[f (x) + g1(x)w0 + g2(x)u] + kh1(x)k
2 + kuk2

� 
2kw0k

2 � 
2kwk2

�

q

i=1

k�2i(�i)� �2i(x)k
2 � 

2kw0 � �1(x)k
2 � 

2kwk2:

(24)

Let

U(xe) = V (x) +W (xe);

��1(x) = [[�1(x)]
T 0 � � � 0]T :

Then, by using (17)–(19), (24), and Lemma 3.2, it follows that

Ux (fe(xe) + ge(xe)we) + kzk2 � 
2kwek

2

= Vx[f (x) + g1(x)w0 + g2(x)��2(�)] +Wx fe(xe)

+ ge(xe)wx + kzk2 � 
2kwek

2

�

q

i=1

k�2i(�i)� �2i(x)k
2 � 

2kw0 � �1(x)k
2

� 
2kwk2 +Wx fe(xe) + ge(xe)wx

= �2kw0 � �1(x)k
2 � 

2kwk2 + h
T
e (xe)he(xe)

+Wx [ �fe(xe) + ge(xe)(we � ��1(x))]

� �2kw0 � �1(x)k
2 � 

2kwk2 +Wx
�fe(xe)

+ h
T
e (xe)he(xe) +

1

42
Wx ge(xe)g

T
e (xe)W

T
x

+ 
2kwe � ��1(x)k

2

= Wx
�fe(xe) + h

T
e (xe)he(xe)

+
1

42
Wx ge(xe)g

T
e (xe)W

T
x � 0: (25)

This shows thatU(xe) is a storage function for the closed-loop
system�c, with respect to the supply rates = 2kwek

2 � kzk2.
This further implies that the system�c has anL2 gain less than or
equal to. Let we = 0. Then from inequality (25), we have

dU(xe(t))

dt
= Ux fe(xe) � �kh1(x(t))k

2� k��2(�(t))k
2
: (26)

Since U(xe) is positive definite, it follows that the equilibrium
(x; �) = (0; 0) of the closed-loop system�c is stable. To prove
asymptotic stability, note that any trajectory satisfyingdU(x )

dt
= 0 is

necessarily a trajectory of_x = f(x) + g2(x)��2(�) such thatx(t) is

fe(xe) =

f(x) + q

i=1 g2i(x)�2i(�i)
f(�1) + g1(�1)�1(�1) + g2(�1)�2(�1)� L1(�1)h21(�1) + L1(�1)h21(x)

...
f(�q) + g1(�q)�1(�q) + g2(�q)�2(�q)� Lq(�q)h2q(�q)+ Lq(�q)h2q(x)

ge(xe) = diagfg1(x); L1(�1); � � � ; Lq(�q)g

�fe(xe) = fe(xe) + [[g1(x)�1(x)]
T 0 � � � 0]T

=

f(x) + g1(x)�1(x) +
q

i=1 g2i(x)�2i(�i)
f(�1) + g1(�1)�1(�1) + g2(�1)�2(�1)� L1(�1)h21(�1) + L1(�1)h21(x)

...
f(�q) + g1(�q)�1(�q) + g2(�q)�2(�q)� Lq(�q)h2q(�q)+ Lq(�q)h2q(x)

(19)

he(xe) = [�21(x)� �21(�1) � � � �2q(x)� �2q(�q)]
T (20)
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bounded, andh1(x(t)) = 0 and ��2(�) = 0 for all t � 0. From the
detectability of the pairff; h1g, it follows that limt!1 x(t) = 0.
Thus, the!-limit set of such a trajectory is a subset of

M = f(x; �) : x = 0; ��2(�) = 0g:

Any initial condition on this!-limit set yields a trajectory in which
x(t) = 0 for all t � 0, while from (17) and��2(�) = 0; �(t) is a
trajectory of

_� = �f0(�)� �L(�)�h2(�) = �f(�)� �L(�)�h2(�)

where

�f0(�) =

f(�1) + g1(�1)�1(�1) + g2(�1)�2(�1)
f(�2) + g1(�2)�1(�2) + g2(�2)�2(�2)

...
f(�q) + g1(�q)�1(�q) + g2(�q)�2(�q)

:

From Lemma 3.3, it follows thatlimt!1 �(t) = 0 and by the invari-
ance principle, the closed-loop system�c is locally asymptotically
stable.

Remark 3.4: Theorem 3.1 presents an approach to solve the
DHCD problem for nonlinear systems. Ifq = 1, then Theorem 3.1
becomes [4, Lemma 3.2], which is a solution to the centralH1
control problem for the system�. It should be noted that the
inequality (14) in Theorem 3.1 still contains undetermined observer
gainsLi(�i)’s. The problem of how to design these observer gains
will be treated in the next subsection.

B. Observer Gain Design

Now we look at how to design these observer gainsLi(�i);
i = 1; 2; � � � ; q. Two methods will be presented. The first method
makes use of the centralized observer design result in [4], and
the idea is similar to that of Paz [8] for linear local observers.
But our result here is for nonlinear systems. The second method
gives a decentralized observer design in terms of solutions to a
matrix inequality that implies the Hamilton–Jacobi inequality (14)
in condition 3) of Theorem 3.1.

B.1 The First Method:First, we review the result for nonlinear
centralized observer design of [4]. Suppose that the assumptions
1) and 2) of Theorem 3.1 hold. Suppose that there exists aC2

positive definite functionS(x), locally defined in a neighborhood of
x = 0 and vanishing atx = 0, which satisfies the Hamilton-Jacobi
inequality

Ho x; S
T
x Sx[f(x) + g1(x)�1(x)] + �

T
2 (x)�2(x)

� 
2
h
T
2 (x)h2(x) +

1

42
Sxg1(x)g

T
1 (x)S

T
x � 0

and the Hessian matrix ofHo(x; S
T
x ) is nonsingular atx = 0.

Suppose also that there exists aC2 matrix-valued functionL(x) 2
Rn�p with p = q

i=1
pi such that

SxL(x) = 22hT2 (x): (27)

Then, from in [4, Th. 3.1], the centralized controller

_� = f(�) + g1(�)�1(�) + g2(�)�2(�) + L(�)(y � h2(�))

u = �2(�)

locally stabilizes the system� and guarantees that the resulting
closed-loop system has anL2 gain less than or equal to.

For decentralized nonlinear control, we have the following result.
Note that, in the decentralized case,L(x) = [L1(x) L2(x) � � �
Lq(x)] with Li(x) 2 Rn�p ; i = 1; � � � ; q, and condition (27)
becomes

SxLi(x) = 22hT2i(x); i = 1; � � � ; q: (28)

Then by using Theorem 3.1, we have the following corollary which
is an extension of Theorem 2.1 in [8] for the linearDHCD problem.

Corollary 3.5: Suppose that assumptions 1) and 2) of Theorem 3.1
hold, and that the local observer gainsLi(�i); i = 1; 2; � � � ; q given in
(28) are such that the Hamilton–Jacobi inequality (14) has aC2 local
positive definite solutionQ(�) in a neighborhood of� = 0, vanishing
at � = 0, and the Hessian matrix ofHdo(�;Q

T
� ) is nonsingular at

� = 0. Then the controller given by (15) and (16) with the above
observer gains solves theDHCD problem for the nonlinear system�.

B.2 The Second Method:Next, we present the second approach to
the observer gain design. Sincef(x) andh2i(x) (i = 1; � � � ; q) are
smooth functions withf(0) = 0 andh2i(0) = 0, there exist smooth
matrix-valued functionsA(x) andC2i(x) (i = 1; � � � ; q) such that

f(x) = A(x)x; h2i(x) = C2i(x)x: (29)

Theorem 3.6: Under conditions 1) and 2) of Theorem 3.1, we
assume thatVx = 2xTP (x) with P (x) being aC2 matrix-valued
function. Furthermore, we assume that [in place of 3) of Theorem 3.1]
there exists aC2 matrix-valued functionsT (�), locally defined and
nonsingular in a neighborhood of� = 0, of the form1

T (�) =

T11(�1) T12(�) � � � T1q(�)
T21(�) T22(�2) � � � T2q(�)

...
...

. . .
...

Tq1(�) Tq2(�) � � � Tqq(�q)

; Tii(�i) 2 R
n�n

(30)

that satisfies the matrix inequality

T (�) �AT
c (�) + �Ac(�)T

T (�) + T (�)KT
c (�)Kc(�)T

T (�)

� 
2
T (�) �CT (�) �C(�)TT (�) + 

2[T (�)

� TD(�)] �CT (�) �C(�)[T (�)� TD(�)]T +
1

2
�g1(�)�g

T
1 (�) < 0

(31)

where�g1(�) is as defined in (9), and there exists a positive definite
functionQ(�) with Q(0) = 0 such thatQ� = 2�TT�1(�) where

TD(�) = diagfT11(�1); T22(�2); � � � ; Tqq(�q)g (32)
�Ac(�) = diagf �A(�1); �A(�2); � � � ; �A(�q)g

�

g2(�1)
...

g2(�q)

diag g
T
21(�1)P

T (�1); g
T
22(�2)P

T (�2); � � � ;

g
T
2q(�q)P

T (�q) (33)

�A(x) = A(x) +
1

2
g1(x)g

T
1 (x)P

T (x)� g2(x)g
T
2 (x)P

T (x) (34)

Kc(�) = diag �gT21(�1)P
T (�1);�g

T
22(�2)P

T (�2); � � � ;

� g
T
2q(�q)P

T (�q) (35)
�C(�) = diagfC21(�1);C22(�2); � � � ; C2q(�q)g: (36)

Denote

�L(�) = 
2
TD(�) �CT (�): (37)

Then the controller given by (15) and (16) with the observer gain as
specified by (37) and (12) solves theDHCD problem for the system
�.

1Note the special structure inT (�) that the diagonal entriesTii(�i) is a
function of �i only, not �!
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Proof: From inequality (32), and definitions (32) and (37), it
follows that

T (�)[ �Ac(�)� �L(�) �C(�)]T + [ �Ac(�)� �L(�) �C(�)]TT (�)

+ T (�)KT
c (�)Kc(�)T

T (�) +
1

2
�g1(�)�g

T
1 (�)

+
1

2
�L(�)�LT (�) < 0

which further implies that

[ �Ac(�)� �L(�) �C(�)]T [T�1(�)]T + T
�1(�)[ �Ac(�)� �L(�) �C(�)])

+K
T
c (�)Kc(�) +

1

2
T
�1(�)�g1(�)�g

T
1 (�)[T

�1(�)]T

+
1

2
T
�1(�)�L(�)�LT (�)[T�1(�)]T < 0:

By using definitions (29) and (33)–(36), and by comparing with
Hdo(�; Q

T
� ) in (14), we can see that the above strict inequality implies

that condition 3) of Theorem 3.1 is satisfied. Also, the nonsingularity
of the Hessian matrix ofHdo(�;Q

T
� ) is implied by the above strict

inequality. Thus, the proof is completed from Theorem 3.1.
It should be noted that, apart from the special structure as men-

tioned in the footnote to Theorem 3.6,T (�) must satisfy the matrix
inequality (31) and must also be related to a gradient function
[i.e., Q� = 2�TT�1(�)]. In general,T (�) may not be symmetric.
Therefore, the task of solving for such aT (�) is indeed a nontrivial
one. But a constant solution (which renders a linear observer gain)
can be obtained easily as follows.

Corollary 3.7: Under conditions 1) and 2) of Theorem 3.1, we
assume thatVx = 2xTP (x) with P (x) being aC2 matrix-valued
function. Furthermore, we assume that [in place of 3) of Theorem 3.1]
there exists a symmetric positive definite matrix�T that satisfies the
matrix inequality

�T �AT
c (0) + �Ac(0) �T + �TKT

c (0)Kc(0) �T � 
2 �T �CT (0) �C(0) �T

+ [ �T � �TD] �CT (0) �C(0)[ �T � �TD] +
1

2
�g1(0)�g

T
1 (0) < 0 (38)

where

�T =

�T11 �T12 � � � �T1q
�T12 �T22 � � � �T2q
...

...
. . .

...
�T1q �T2q � � � �Tqq

; �TD = diagf �T11; �T22; � � � ; �Tqqg

Tii = T
T
ii 2 R

n�n
: (39)

Denote

�L = 
2 �TD �CT (0): (40)

Then the controller given by (15) and (16) with the above observer
gain in (40) solves the DHCD problem for the system�.

Remark 3.8: Theorem 3.6 presents a design method for local
observer gainsLi(�i) (i = 1; � � � ; q), which is based on the existence
of solutions of the form (30) to the nonlinear matrix inequality (31).
From Corollary 3.7, the linear local observer gains can be designed
by solving a linear matrix inequality. These results generalize to
nonlinear decentralized control systems the results given in [13] for
linear decentralized control systems. The results in [13] are given in
terms of solutions of modified algebraic Riccati equations.

IV. A N EXAMPLE

Consider the following nonlinear system:

_x =
�2x1 + x1x

2

2

x32
x+

1
x1

w0 +
0 1
1 1

u1
u2

TABLE I
HERE “—” I NDICATES THAT THE SYSTEM BECOMES UNSTABLE

z = x1 x
4

2 u1 u2
T

y =
2x1 + 2x2

2x1
+

w11

w12

which is of the form� in (1)–(3). Hence,q = 2. We will design a
decentralized controller for the above system by using Theorem 3.1
and Corollary 3.7.

For this example, it is easy to check thatff; h1g is locally
detectable. By solving (13), the following positive definite solutions
are obtained with a minimum value ofd = 0:48 :

V (x) = 0:3642x21 � 0:037 06x1x2 + 0:04331x22

� 0:04442x31 + 0:1324x21x2 � 0:08808x1x
2

2

+ 0:04536x32 + 0:1612x41 � 0:7842x31x2

+ 2:1051x21x
2

2 � 2:1938x1x
3

2 + 1:1772x42:

The observer gain is taken as linear by solving (38) of Corollary 3.7

�L =
L1 0
0 L2

=
0:3645 0:4029 0 0

0 0 0:6231 �0:2519

T

:

Finally the controller is given by (15) and (16) with�1(�i) and
�2(�i) as defined in (6) and (7).

As there is no viable method for computing theH1-norm of an
affine nonlinear system, the following approximateL2-gain max is
computed:

max = max
t�0

t

0
z2
1
(�) + z2

2
(�) + z2

3
(�) + z2

4
(�) d�

t

0
w2

0
(�) + w2

11
(�) + w2

12
(�) d�

:

If the H1-norm of the closed-loop system isr, then obviously
0 � max � r � d.

In computer simulations, the plant disturbancew0(t) is taken as
w0(t) = A � sin(4�t), the measurement noisew11(t) is taken as a
square wave of an amplitude�A and a frequency 10 Hz, andw12(t)
is taken as a saw-tooth wave of an amplitudeA and a frequency of
7 Hz. Here the amplitudeA is variable. The initial conditions of the
system and the controller are all set to zero. The simulation results
are given in Table I. Here, “Nonlinear” refers to the controller that we
designed just now, and “Linear” refers to the controller after dropping
all nonlinear terms in our nonlinear controller (namely, the controller
by using the linear methods of [13]).

It can be seen from Table I that, for small disturbances/noises
(A = 0:1), the linear and the nonlinear controllers give the same
closed-loop disturbance attenuationmax. Also the L2-attenuation
max is less than the designed value ofd = 0:48. When the distur-
bances/noises are increased toA = 0:18, the linear controller fails to
stabilize the system, but the nonlinear controller not only stabilizes
the system but also provides adequate disturbance attenuation. In
fact, the nonlinear controller can meet the design specification for a
disturbance level of up toA = 0:23.

Of course, the nonlinear method presented in this paper is a
local one. This is confirmed by the simulation result that if the
disturbance/noise level is increased beyondA = 0:23, the nonlinear
controller fails to stabilize the system.
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V. CONCLUSION

This paper presents a sufficient condition for theDHCD prob-
lem for nonlinear systems. The resulting controller guarantees local
asymptotic stability and provides a predeterminedL2-gain bound on
the closed-loop system. Two design methods of the local observers
are given: one is based on the centralized observer gain and another
one is related to the solution of the matrix inequalities. The results
are extensions of those in [8] and [13] for the case of linear systems.
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A Methodology for the Design of Optimal Traffic
Shapers in Communication Networks

Venkat Anantharam and Takis Konstantopoulos

Abstract—The authors consider the problem of optimally regulating
the source traffic in a communication network to simultaneously satisfy
a finite number of affine burstiness constraints. They prove that an
optimal solution is a series connection of correspondingly dimensioned
“leaky buckets.” They propose a simple “fork-join” implementation of
the optimal solution and study extensions to the problem of optimally
shaping the traffic flow to meet a burstiness constraint specified by a
concave increasing function. A consequence of their optimality results is
that permutations of leaky buckets in a series connection are input–output
equivalent.

Index Terms—Communication networks, flow control, Skorokhod re-
flection mapping.

I. PRELIMINARIES

In this paper we consider the problem of designing flow control
schemes in a communication network. Flow control is necessary for
the regulation and shaping of a source traffic stream, which must
interact and share network resources with other traffic streams after
it is admitted. Therefore, one normally requires the admitted flow
to satisfy certain “burstiness” or “shaping” constraints. It is also
desirable that the controller be optimal, in that the offered traffic
is transmitted as quickly as possible.

A general model for a traffic process is a nonnegative sigma-finite
Borel measureA on the time axisIR+. This is represented by an
increasing right-continuous processfAt; t � 0g; the interpretation
is that for 0 � s � t, At � As gives the volume of traffic (in
cells) on the time interval(s; t]. WriteM for the collection of such
processes. We writeAS for the restriction ofA onS � IR+, defined
by AS

t :=
S\[0; t]

dAs. We also define a partial ordering onM by
A � B () At � Bt, for all t � 0. We say thatA 2 M is
(�i0; �i; �i)i=1; ���; n constrainediff, for all 0 � s � t

At � min
1�i�n

f�i0 + �itg; At �As � min
1�i�n

f�i + �i(t� s)g: (1)

Here,�i � �i0 � 0; �i � 0, for all i. For n = 1 we simply say
thatA is (�0; �; �) constrained. The above definitions are discussed
in Anantharam [1] and Cruz [4], [5], and they also closely match
the standard shaping descriptors that have been adopted in practice
for high-speed networks. More generally, forf0; f arbitrary concave
increasing functions fromIR+ into IR+; we say thatA is (f0; f)
constrainediff

At � f0(t); At �As � f(t� s): (2)

Of course, (1) is a convenient special case of (2). Atraffic regulator,
or flow controlleris simply a map':M!M. Some properties that
such a map may possess are as follows.
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