41 research outputs found
Accelerated Training for Massive Classification via Dynamic Class Selection
Massive classification, a classification task defined over a vast number of
classes (hundreds of thousands or even millions), has become an essential part
of many real-world systems, such as face recognition. Existing methods,
including the deep networks that achieved remarkable success in recent years,
were mostly devised for problems with a moderate number of classes. They would
meet with substantial difficulties, e.g. excessive memory demand and
computational cost, when applied to massive problems. We present a new method
to tackle this problem. This method can efficiently and accurately identify a
small number of "active classes" for each mini-batch, based on a set of dynamic
class hierarchies constructed on the fly. We also develop an adaptive
allocation scheme thereon, which leads to a better tradeoff between performance
and cost. On several large-scale benchmarks, our method significantly reduces
the training cost and memory demand, while maintaining competitive performance.Comment: 8 pages, 6 figures, AAAI 201
Proteus: Simulating the Performance of Distributed DNN Training
DNN models are becoming increasingly larger to achieve unprecedented
accuracy, and the accompanying increased computation and memory requirements
necessitate the employment of massive clusters and elaborate parallelization
strategies to accelerate DNN training. In order to better optimize the
performance and analyze the cost, it is indispensable to model the training
throughput of distributed DNN training. However, complex parallelization
strategies and the resulting complex runtime behaviors make it challenging to
construct an accurate performance model. In this paper, we present Proteus, the
first standalone simulator to model the performance of complex parallelization
strategies through simulation execution. Proteus first models complex
parallelization strategies with a unified representation named Strategy Tree.
Then, it compiles the strategy tree into a distributed execution graph and
simulates the complex runtime behaviors, comp-comm overlap and bandwidth
sharing, with a Hierarchical Topo-Aware Executor (HTAE). We finally evaluate
Proteus across a wide variety of DNNs on three hardware configurations.
Experimental results show that Proteus achieves average prediction
error and preserves order for training throughput of various parallelization
strategies. Compared to state-of-the-art approaches, Proteus reduces prediction
error by up to
Uptake, sequestration and tolerance of cadmium at cellular levels in the hyperaccumulator plant species Sedum alfredii.
Sedum alfredii is one of a few plant species known to hyperaccumulate cadmium (Cd). Uptake, localization, and tolerance of Cd at cellular levels in shoots were compared in hyperaccumulating (HE) and non-hyperaccumulating (NHE) ecotypes of Sedum alfredii. X-ray fluorescence images of Cd in stems and leaves showed only a slight Cd signal restricted within vascular bundles in the NHEs, while enhanced localization of Cd, with significant tissue- and age-dependent variations, was detected in HEs. In contrast to the vascular-enriched Cd in young stems, parenchyma cells in leaf mesophyll, stem pith and cortex tissues served as terminal storage sites for Cd sequestration in HEs. Kinetics of Cd transport into individual leaf protoplasts of the two ecotypes showed little difference in Cd accumulation. However, far more efficient storage of Cd in vacuoles was apparent in HEs. Subsequent analysis of cell viability and hydrogen peroxide levels suggested that HE protoplasts exhibited higher resistance to Cd than those of NHE protoplasts. These results suggest that efficient sequestration into vacuoles, as opposed to rapid transport into parenchyma cells, is a pivotal process in Cd accumulation and homeostasis in shoots of HE S. alfredii. This is in addition to its efficient root-to-shoot translocation of Cd
Input-to-State Stability of Lurâe Hyperbolic Distributed Complex-Valued Parameter Control Systems: LOI Approach
In this work, input-to-state stability of Lurâe hyperbolic distributed complex-valued parameter control systems has been addressed. Using comparison principle, delay-dependent sufficient conditions for the input-to-state stability in complex Hilbert spaces are established in terms of linear operator inequalities. Finally, numerical computation
illustrates our result
The community-centered freshwater biogeochemistry model unified RIVE v1.0: a unified version for water column
Research on mechanisms of organic matter degradation, bacterial activities, phytoplankton dynamics, and other processes has led to the development of numerous sophisticated water quality models. The earliest model, dating back to 1925, was based on first-order kinetics for organic matter degradation. The community-centered freshwater biogeochemistry model RIVE was initially developed in 1994 and has subsequently been integrated into several software programs such as Seneque-Riverstrahler, pyNuts-Riverstrahler, ProSe/ProSe-PA, and Barman. After 30Â years of research, the use of different programming languages including QBasic, Visual Basic, Fortran, ANSI C, and Python, as well as parallel evolution and the addition of new formalisms, raises questions about their comparability. This paper presents a unified version of the RIVE model for the water column, including formalisms for bacterial communities (heterotrophic and nitrifying), primary producers, zooplankton, nutrients, inorganic carbon, and dissolved oxygen cycles. The unified RIVE model is open-source and implemented in Python 3 to create pyRIVE 1.0 and in ANSI C to create C-RIVE 0.32. The organic matter degradation module is validated by simulating batch experiments. The comparability of the pyRIVE 1.0 and C-RIVE 0.32 software is verified by modeling a river stretch case study. The case study considers the full biogeochemical cycles (microorganisms, nutrients, carbon, and oxygen) in the water column, as well as the effects of light and water temperature. The results show that the simulated concentrations of all state variables, including microorganisms and chemical species, are very similar for pyRIVE 1.0 and C-RIVE 0.32. This open-source project highly encourages contributions from the freshwater biogeochemistry community to further advance the project and achieve common objectives.</p
Hypoxic acclimatization training improves the resistance to motion sickness
ObjectiveVestibular provocation is one of the main causes of flight illusions, and its occurrence is closely related to the susceptibility of motion sickness (MS). However, existing training programs have limited effect in improving the resistance to motion sickness. In this study, we investigated the effects of hypoxia acclimatization training (HAT) on the resistance to motion sickness.MethodsHealthy military college students were identified as subjects according to the criteria. MS model was induced by a rotary chair. Experimental groups included control, HAT, 3D roller training (3DRT), and combined training.ResultsThe Graybiel scores were decreased in the HAT group and the 3DRT group and further decreased in the combined training group in MS induced by the rotary chair. Participants had a significant increase in blood pressure after the rotary chair test and a significant increase in the heart rate during the rotary chair test, but these changes disappeared in all three training groups. Additionally, LFn was increased, HFn was decreased, and LF/HF was increased accordingly during the rotary chair test in the control group, but the changes of these three parameters were completely opposite in the three training groups during the rotary chair test. Compared with the control group, the decreasing changes in pupillary contraction velocity (PCV) and pupillary minimum diameter (PMD) of the three training groups were smaller. In particular, the binocular PCV changes were further attenuated in the combined training group.ConclusionOur research provides a possible candidate solution for training military pilots in the resistance to motion sickness
Ămissions de gaz Ă effet de serre et rĂ©tentions de nutriments dans les rĂ©servoirs du bassin de la Seine : bilan et modĂ©lisation
The impacts of reservoirs on greenhouse gas (GHG, including CH4: methane, CO2: carbon dioxide, and N2O: nitrous oxide) emissions and the biogeochemical cycling of nutrients (including C: carbon, N: nitrogen, P: phosphorus, and Si: silica) have received widespread attention. This work first estimates GHG emissions from global reservoirs and examines their long-term evolution, and then focuses on the main reservoirs in the Seine Basin to elucidate their contribution to GHG emissions and their impact on downstream nutrient and CO2 concentrations. Finally, the updated process-based Barman model was applied to these reservoirs to unravel the nutrient fates and CO2 dynamics in these reservoirs. At the global scale, the average fluxes of CH4, CO2, and N2O were 125.7 ± 21.2 mg C m-2 d-1, 415.7 ± 36.0 mg C m-2 d-1, and 0.28 ± 0.11 mg N m-2 d-1, respectively. Combing with the GranD database (global reservoir and dam database, v 1.3), we estimated that the annual GHG emission from global reservoirs amounted to 12.9 Tg CH4-C yr-1, 50.8 Tg CO2-C yr-1, and 0.04 Tg N2O-N yr-1. A high increase rate of GHG emissions occurred from 1950 to 1980, due to the rapid increases of the numbers and surface areas of global reservoirs at the same period. Focusing on the three main reservoirs of the Seine Basin, obvious seasonal patterns of CH4 and CO2 were observed, CH4 concentrations in these reservoirs were high in summer and autumn and low in winter and spring, and were significantly and positively correlated with water temperate and SDO (saturation of dissolved oxygen), which is in contrast to CO2. The three reservoirs were slight sources of GHG, with the average values of 6.6 mg CH4âC mâ2 dâ1, 132.7 mg CO2âC mâ2 dâ1, and 0.03 mg N2OâN mâ2 dâ1, which were lower than the average values of global reservoirs. Based on the long-term (1998-2018) water quality data and our field measurements (2019-2020), we found that the reservoirs significantly change their downstream water quality. They increase DOC (dissolved organic matter) and BDOC (biodegradable DOC) concentrations, while decrease the concentrations of DIN (dissolved inorganic nitrogen), PO43- (orthophosphate), DSi (dissolved silica), and CO2 during their emptying periods. The mass-balance calculation revealed that these reservoirs retained 16-53%, 26-48%, 22-40%, and 36-76% of the inputs of DIN, PO43-, DSi, and SM, respectively. Qualitative analysis suggested that the mixing effect of entering water (quantity and quality) and biogeochemical processes in these reservoirs are the two dominant factors affecting reservoir water quality changes, and thus resulting in the changes in downstream water quality. The application of the Barman model satisfactorily simulates the changes of water quality variables (nutrients and CO2) and explicitly unravels nutrient (C, N, P, and Si) fates in these reservoirs. The phytoplankton assimilation (for NO3-, PO43-, and DSi) and benthic denitrification (for NO3-) are the dominant processes in removing nutrients. The precipitation of CaCO3 and CO2 emission are responsible for the DIC removal in these reservoirs. The results of scenario analysis suggested that reservoir trophic states (P concentrations) and morphological characteristics (mean depth) would significantly affect the retention efficiencies of NO3- and DSi, and thus its biogeochemical functions to downstream reservoirs.L'impact des barragesârĂ©servoirs sur les Ă©missions de GES (gaz Ă effet de serre, CH4: mĂ©thane, CO2: dioxyde de carbone, et N2O: protoxyde dâazote) et sur les cycles biogĂ©ochimiques du C (carbone) et des nutriments (N: azote, P: phosphore, et Si: silice) a fait l'objet d'une attention croissante depuis plusieurs annĂ©es. AprĂšs un premier travail d'estimation des Ă©missions de GES par les rĂ©servoirs mondiaux, et lâexamen de leur Ă©volution Ă long terme, les travaux se concentrent sur les trois principaux rĂ©servoirs du bassin de la Seine, afin de dĂ©terminer leur contribution aux Ă©missions de GES et leur impact sur les concentrations de CO2 et de nutriments, dans la Seine Ă leur aval. Enfin, une version actualisĂ©e du modĂšle biogĂ©ochimique BarMan est appliquĂ©e aux rĂ©servoirs du bassin de la Seine afin dâidentifier et quantifier les principaux processus affectant le devenir des nutriments et la dynamique du CO2. Ă l'Ă©chelle mondiale, les flux moyens de CH4, CO2 et N2O sâĂ©lĂšvent respectivement Ă 125,7 ± 21,2 mg C mâ2 dâ1, 415,7 ± 36,0 mg C mâ2 dâ1 et 0,28 ± 0,11 mg N mâ2 dâ1. En sâappuyant sur un recensement mondial des barrages et rĂ©servoirs (base de donnĂ©es GranD v. 1.3), nous avons estimĂ© que les Ă©missions annuelles de GES des rĂ©servoirs mondiaux sâĂ©lĂšvent Ă 12,9 Tg CH4âC anâ1, 50,8 Tg CO2âC anâ1, et 0,04 Tg N2OâN anâ1. L'accroissement de ces Ă©missions entre 1950 et 1980, a suivi l'augmentation rapide du nombre et de la superficie des rĂ©servoirs mondiaux. Dans le bassin de la Seine, deux ans de campagnes de mesures ont permis de mettre en Ă©vidence des tendances saisonniĂšres marquĂ©es pour le CH4 et le CO2 dans les trois principaux rĂ©servoirs. Les concentrations de CH4 dans ces rĂ©servoirs sont Ă©levĂ©es en Ă©tĂ©âautomne, faibles en hiverâprintemps, et apparaissent significativement et positivement corrĂ©lĂ©es avec la tempĂ©rature de l'eau et la saturation en oxygĂšne dissous. Des tendances inverses ont Ă©tĂ© mises en Ă©vidence pour le CO2 avec des concentrations les plus basses en Ă©tĂ©, au maximum de lâactivitĂ© photosynthĂ©tique. Au final, les trois rĂ©servoirs apparaissent comme des sources relativement faibles de GES, avec des valeurs moyennes de 6,6 mg CH4âC mâ2 dâ1, 132,7 mg CO2âC mâ2 dâ1 et 0,03 mg N2OâN mâ2 dâ1, assez largement infĂ©rieures aux valeurs moyennes des rĂ©servoirs mondiaux. Des chroniques longues dâobservations des Grands Lacs de Seine (1998â2018) sur la qualitĂ© de l'eau ont Ă©tĂ© complĂ©tĂ©es par nos mesures sur le terrain (2019â2020). Le calcul des bilans entrĂ©esâsorties montre une rĂ©tention importante dans les rĂ©servoirs (16â53% pour le DIN: azote inorganique dissous, 26â48% pour les PO43â: orthophosphates, 22â40% pour la DSi: silice dissoute et 36â76% des MES: matiĂšres en suspension). Les rĂ©servoirs modifient ainsi considĂ©rablement la qualitĂ© des eaux rĂ©ceptrices en aval. Tout en diminuant les concentrations de DIN, PO43â et DSi, ils augmentent les concentrations en COD (carbone organique dissous) et CODB (COD biodĂ©gradable), ainsi que celles du CO2 pendant leurs pĂ©riodes de vidange, en fin dâĂ©tĂ© et en automne. Une analyse quantitative montre que les Ă©volutions saisonniĂšres de la qualitĂ© de l'eau des rĂ©servoirs sont dĂ©terminĂ©es tant par la dilution de l'eau entrante (quantitĂ© et qualitĂ©) que par les processus biogĂ©ochimiques dans ces rĂ©servoirs. Le modĂšle BarMan a permis de simuler de maniĂšre satisfaisante les variations saisonniĂšres de la qualitĂ© de lâeau des trois rĂ©servoirs, pour les concentrations en nutriments et pour le CO2, et a par ailleurs permis de mieux caractĂ©riser le devenir du C et des nutriments (N, P et Si) dans les rĂ©servoirs de la Seine. L'assimilation des NO3â, PO43â, et DSi par le phytoplancton et la dĂ©nitrification benthique (pour NO3â) apparaissent comme les principaux processus gouvernant l'Ă©limination des nutriments. La prĂ©cipitation de CaCO3 (Carbonate de calcium) et l'Ă©mission de CO2 sont responsables de l'Ă©limination du DIC dans les trois rĂ©servoirs. Des explorations par le modĂšle montrent [...
Ămissions de gaz Ă effet de serre et rĂ©tentions de nutriments dans les rĂ©servoirs du bassin de la Seine : bilan et modĂ©lisation
The impacts of reservoirs on greenhouse gas (GHG, including CH4: methane, CO2: carbon dioxide, and N2O: nitrous oxide) emissions and the biogeochemical cycling of nutrients (including C: carbon, N: nitrogen, P: phosphorus, and Si: silica) have received widespread attention. This work first estimates GHG emissions from global reservoirs and examines their long-term evolution, and then focuses on the main reservoirs in the Seine Basin to elucidate their contribution to GHG emissions and their impact on downstream nutrient and CO2 concentrations. Finally, the updated process-based Barman model was applied to these reservoirs to unravel the nutrient fates and CO2 dynamics in these reservoirs. At the global scale, the average fluxes of CH4, CO2, and N2O were 125.7 ± 21.2 mg C m-2 d-1, 415.7 ± 36.0 mg C m-2 d-1, and 0.28 ± 0.11 mg N m-2 d-1, respectively. Combing with the GranD database (global reservoir and dam database, v 1.3), we estimated that the annual GHG emission from global reservoirs amounted to 12.9 Tg CH4-C yr-1, 50.8 Tg CO2-C yr-1, and 0.04 Tg N2O-N yr-1. A high increase rate of GHG emissions occurred from 1950 to 1980, due to the rapid increases of the numbers and surface areas of global reservoirs at the same period. Focusing on the three main reservoirs of the Seine Basin, obvious seasonal patterns of CH4 and CO2 were observed, CH4 concentrations in these reservoirs were high in summer and autumn and low in winter and spring, and were significantly and positively correlated with water temperate and SDO (saturation of dissolved oxygen), which is in contrast to CO2. The three reservoirs were slight sources of GHG, with the average values of 6.6 mg CH4âC mâ2 dâ1, 132.7 mg CO2âC mâ2 dâ1, and 0.03 mg N2OâN mâ2 dâ1, which were lower than the average values of global reservoirs. Based on the long-term (1998-2018) water quality data and our field measurements (2019-2020), we found that the reservoirs significantly change their downstream water quality. They increase DOC (dissolved organic matter) and BDOC (biodegradable DOC) concentrations, while decrease the concentrations of DIN (dissolved inorganic nitrogen), PO43- (orthophosphate), DSi (dissolved silica), and CO2 during their emptying periods. The mass-balance calculation revealed that these reservoirs retained 16-53%, 26-48%, 22-40%, and 36-76% of the inputs of DIN, PO43-, DSi, and SM, respectively. Qualitative analysis suggested that the mixing effect of entering water (quantity and quality) and biogeochemical processes in these reservoirs are the two dominant factors affecting reservoir water quality changes, and thus resulting in the changes in downstream water quality. The application of the Barman model satisfactorily simulates the changes of water quality variables (nutrients and CO2) and explicitly unravels nutrient (C, N, P, and Si) fates in these reservoirs. The phytoplankton assimilation (for NO3-, PO43-, and DSi) and benthic denitrification (for NO3-) are the dominant processes in removing nutrients. The precipitation of CaCO3 and CO2 emission are responsible for the DIC removal in these reservoirs. The results of scenario analysis suggested that reservoir trophic states (P concentrations) and morphological characteristics (mean depth) would significantly affect the retention efficiencies of NO3- and DSi, and thus its biogeochemical functions to downstream reservoirs.L'impact des barragesârĂ©servoirs sur les Ă©missions de GES (gaz Ă effet de serre, CH4: mĂ©thane, CO2: dioxyde de carbone, et N2O: protoxyde dâazote) et sur les cycles biogĂ©ochimiques du C (carbone) et des nutriments (N: azote, P: phosphore, et Si: silice) a fait l'objet d'une attention croissante depuis plusieurs annĂ©es. AprĂšs un premier travail d'estimation des Ă©missions de GES par les rĂ©servoirs mondiaux, et lâexamen de leur Ă©volution Ă long terme, les travaux se concentrent sur les trois principaux rĂ©servoirs du bassin de la Seine, afin de dĂ©terminer leur contribution aux Ă©missions de GES et leur impact sur les concentrations de CO2 et de nutriments, dans la Seine Ă leur aval. Enfin, une version actualisĂ©e du modĂšle biogĂ©ochimique BarMan est appliquĂ©e aux rĂ©servoirs du bassin de la Seine afin dâidentifier et quantifier les principaux processus affectant le devenir des nutriments et la dynamique du CO2. Ă l'Ă©chelle mondiale, les flux moyens de CH4, CO2 et N2O sâĂ©lĂšvent respectivement Ă 125,7 ± 21,2 mg C mâ2 dâ1, 415,7 ± 36,0 mg C mâ2 dâ1 et 0,28 ± 0,11 mg N mâ2 dâ1. En sâappuyant sur un recensement mondial des barrages et rĂ©servoirs (base de donnĂ©es GranD v. 1.3), nous avons estimĂ© que les Ă©missions annuelles de GES des rĂ©servoirs mondiaux sâĂ©lĂšvent Ă 12,9 Tg CH4âC anâ1, 50,8 Tg CO2âC anâ1, et 0,04 Tg N2OâN anâ1. L'accroissement de ces Ă©missions entre 1950 et 1980, a suivi l'augmentation rapide du nombre et de la superficie des rĂ©servoirs mondiaux. Dans le bassin de la Seine, deux ans de campagnes de mesures ont permis de mettre en Ă©vidence des tendances saisonniĂšres marquĂ©es pour le CH4 et le CO2 dans les trois principaux rĂ©servoirs. Les concentrations de CH4 dans ces rĂ©servoirs sont Ă©levĂ©es en Ă©tĂ©âautomne, faibles en hiverâprintemps, et apparaissent significativement et positivement corrĂ©lĂ©es avec la tempĂ©rature de l'eau et la saturation en oxygĂšne dissous. Des tendances inverses ont Ă©tĂ© mises en Ă©vidence pour le CO2 avec des concentrations les plus basses en Ă©tĂ©, au maximum de lâactivitĂ© photosynthĂ©tique. Au final, les trois rĂ©servoirs apparaissent comme des sources relativement faibles de GES, avec des valeurs moyennes de 6,6 mg CH4âC mâ2 dâ1, 132,7 mg CO2âC mâ2 dâ1 et 0,03 mg N2OâN mâ2 dâ1, assez largement infĂ©rieures aux valeurs moyennes des rĂ©servoirs mondiaux. Des chroniques longues dâobservations des Grands Lacs de Seine (1998â2018) sur la qualitĂ© de l'eau ont Ă©tĂ© complĂ©tĂ©es par nos mesures sur le terrain (2019â2020). Le calcul des bilans entrĂ©esâsorties montre une rĂ©tention importante dans les rĂ©servoirs (16â53% pour le DIN: azote inorganique dissous, 26â48% pour les PO43â: orthophosphates, 22â40% pour la DSi: silice dissoute et 36â76% des MES: matiĂšres en suspension). Les rĂ©servoirs modifient ainsi considĂ©rablement la qualitĂ© des eaux rĂ©ceptrices en aval. Tout en diminuant les concentrations de DIN, PO43â et DSi, ils augmentent les concentrations en COD (carbone organique dissous) et CODB (COD biodĂ©gradable), ainsi que celles du CO2 pendant leurs pĂ©riodes de vidange, en fin dâĂ©tĂ© et en automne. Une analyse quantitative montre que les Ă©volutions saisonniĂšres de la qualitĂ© de l'eau des rĂ©servoirs sont dĂ©terminĂ©es tant par la dilution de l'eau entrante (quantitĂ© et qualitĂ©) que par les processus biogĂ©ochimiques dans ces rĂ©servoirs. Le modĂšle BarMan a permis de simuler de maniĂšre satisfaisante les variations saisonniĂšres de la qualitĂ© de lâeau des trois rĂ©servoirs, pour les concentrations en nutriments et pour le CO2, et a par ailleurs permis de mieux caractĂ©riser le devenir du C et des nutriments (N, P et Si) dans les rĂ©servoirs de la Seine. L'assimilation des NO3â, PO43â, et DSi par le phytoplancton et la dĂ©nitrification benthique (pour NO3â) apparaissent comme les principaux processus gouvernant l'Ă©limination des nutriments. La prĂ©cipitation de CaCO3 (Carbonate de calcium) et l'Ă©mission de CO2 sont responsables de l'Ă©limination du DIC dans les trois rĂ©servoirs. Des explorations par le modĂšle montrent [...
Ămissions de gaz Ă effet de serre et rĂ©tentions de nutriments dans les rĂ©servoirs du bassin de la Seine : bilan et modĂ©lisation
The impacts of reservoirs on greenhouse gas (GHG, including CH4: methane, CO2: carbon dioxide, and N2O: nitrous oxide) emissions and the biogeochemical cycling of nutrients (including C: carbon, N: nitrogen, P: phosphorus, and Si: silica) have received widespread attention. This work first estimates GHG emissions from global reservoirs and examines their long-term evolution, and then focuses on the main reservoirs in the Seine Basin to elucidate their contribution to GHG emissions and their impact on downstream nutrient and CO2 concentrations. Finally, the updated process-based Barman model was applied to these reservoirs to unravel the nutrient fates and CO2 dynamics in these reservoirs. At the global scale, the average fluxes of CH4, CO2, and N2O were 125.7 ± 21.2 mg C m-2 d-1, 415.7 ± 36.0 mg C m-2 d-1, and 0.28 ± 0.11 mg N m-2 d-1, respectively. Combing with the GranD database (global reservoir and dam database, v 1.3), we estimated that the annual GHG emission from global reservoirs amounted to 12.9 Tg CH4-C yr-1, 50.8 Tg CO2-C yr-1, and 0.04 Tg N2O-N yr-1. A high increase rate of GHG emissions occurred from 1950 to 1980, due to the rapid increases of the numbers and surface areas of global reservoirs at the same period. Focusing on the three main reservoirs of the Seine Basin, obvious seasonal patterns of CH4 and CO2 were observed, CH4 concentrations in these reservoirs were high in summer and autumn and low in winter and spring, and were significantly and positively correlated with water temperate and SDO (saturation of dissolved oxygen), which is in contrast to CO2. The three reservoirs were slight sources of GHG, with the average values of 6.6 mg CH4âC mâ2 dâ1, 132.7 mg CO2âC mâ2 dâ1, and 0.03 mg N2OâN mâ2 dâ1, which were lower than the average values of global reservoirs. Based on the long-term (1998-2018) water quality data and our field measurements (2019-2020), we found that the reservoirs significantly change their downstream water quality. They increase DOC (dissolved organic matter) and BDOC (biodegradable DOC) concentrations, while decrease the concentrations of DIN (dissolved inorganic nitrogen), PO43- (orthophosphate), DSi (dissolved silica), and CO2 during their emptying periods. The mass-balance calculation revealed that these reservoirs retained 16-53%, 26-48%, 22-40%, and 36-76% of the inputs of DIN, PO43-, DSi, and SM, respectively. Qualitative analysis suggested that the mixing effect of entering water (quantity and quality) and biogeochemical processes in these reservoirs are the two dominant factors affecting reservoir water quality changes, and thus resulting in the changes in downstream water quality. The application of the Barman model satisfactorily simulates the changes of water quality variables (nutrients and CO2) and explicitly unravels nutrient (C, N, P, and Si) fates in these reservoirs. The phytoplankton assimilation (for NO3-, PO43-, and DSi) and benthic denitrification (for NO3-) are the dominant processes in removing nutrients. The precipitation of CaCO3 and CO2 emission are responsible for the DIC removal in these reservoirs. The results of scenario analysis suggested that reservoir trophic states (P concentrations) and morphological characteristics (mean depth) would significantly affect the retention efficiencies of NO3- and DSi, and thus its biogeochemical functions to downstream reservoirs.L'impact des barragesârĂ©servoirs sur les Ă©missions de GES (gaz Ă effet de serre, CH4: mĂ©thane, CO2: dioxyde de carbone, et N2O: protoxyde dâazote) et sur les cycles biogĂ©ochimiques du C (carbone) et des nutriments (N: azote, P: phosphore, et Si: silice) a fait l'objet d'une attention croissante depuis plusieurs annĂ©es. AprĂšs un premier travail d'estimation des Ă©missions de GES par les rĂ©servoirs mondiaux, et lâexamen de leur Ă©volution Ă long terme, les travaux se concentrent sur les trois principaux rĂ©servoirs du bassin de la Seine, afin de dĂ©terminer leur contribution aux Ă©missions de GES et leur impact sur les concentrations de CO2 et de nutriments, dans la Seine Ă leur aval. Enfin, une version actualisĂ©e du modĂšle biogĂ©ochimique BarMan est appliquĂ©e aux rĂ©servoirs du bassin de la Seine afin dâidentifier et quantifier les principaux processus affectant le devenir des nutriments et la dynamique du CO2. Ă l'Ă©chelle mondiale, les flux moyens de CH4, CO2 et N2O sâĂ©lĂšvent respectivement Ă 125,7 ± 21,2 mg C mâ2 dâ1, 415,7 ± 36,0 mg C mâ2 dâ1 et 0,28 ± 0,11 mg N mâ2 dâ1. En sâappuyant sur un recensement mondial des barrages et rĂ©servoirs (base de donnĂ©es GranD v. 1.3), nous avons estimĂ© que les Ă©missions annuelles de GES des rĂ©servoirs mondiaux sâĂ©lĂšvent Ă 12,9 Tg CH4âC anâ1, 50,8 Tg CO2âC anâ1, et 0,04 Tg N2OâN anâ1. L'accroissement de ces Ă©missions entre 1950 et 1980, a suivi l'augmentation rapide du nombre et de la superficie des rĂ©servoirs mondiaux. Dans le bassin de la Seine, deux ans de campagnes de mesures ont permis de mettre en Ă©vidence des tendances saisonniĂšres marquĂ©es pour le CH4 et le CO2 dans les trois principaux rĂ©servoirs. Les concentrations de CH4 dans ces rĂ©servoirs sont Ă©levĂ©es en Ă©tĂ©âautomne, faibles en hiverâprintemps, et apparaissent significativement et positivement corrĂ©lĂ©es avec la tempĂ©rature de l'eau et la saturation en oxygĂšne dissous. Des tendances inverses ont Ă©tĂ© mises en Ă©vidence pour le CO2 avec des concentrations les plus basses en Ă©tĂ©, au maximum de lâactivitĂ© photosynthĂ©tique. Au final, les trois rĂ©servoirs apparaissent comme des sources relativement faibles de GES, avec des valeurs moyennes de 6,6 mg CH4âC mâ2 dâ1, 132,7 mg CO2âC mâ2 dâ1 et 0,03 mg N2OâN mâ2 dâ1, assez largement infĂ©rieures aux valeurs moyennes des rĂ©servoirs mondiaux. Des chroniques longues dâobservations des Grands Lacs de Seine (1998â2018) sur la qualitĂ© de l'eau ont Ă©tĂ© complĂ©tĂ©es par nos mesures sur le terrain (2019â2020). Le calcul des bilans entrĂ©esâsorties montre une rĂ©tention importante dans les rĂ©servoirs (16â53% pour le DIN: azote inorganique dissous, 26â48% pour les PO43â: orthophosphates, 22â40% pour la DSi: silice dissoute et 36â76% des MES: matiĂšres en suspension). Les rĂ©servoirs modifient ainsi considĂ©rablement la qualitĂ© des eaux rĂ©ceptrices en aval. Tout en diminuant les concentrations de DIN, PO43â et DSi, ils augmentent les concentrations en COD (carbone organique dissous) et CODB (COD biodĂ©gradable), ainsi que celles du CO2 pendant leurs pĂ©riodes de vidange, en fin dâĂ©tĂ© et en automne. Une analyse quantitative montre que les Ă©volutions saisonniĂšres de la qualitĂ© de l'eau des rĂ©servoirs sont dĂ©terminĂ©es tant par la dilution de l'eau entrante (quantitĂ© et qualitĂ©) que par les processus biogĂ©ochimiques dans ces rĂ©servoirs. Le modĂšle BarMan a permis de simuler de maniĂšre satisfaisante les variations saisonniĂšres de la qualitĂ© de lâeau des trois rĂ©servoirs, pour les concentrations en nutriments et pour le CO2, et a par ailleurs permis de mieux caractĂ©riser le devenir du C et des nutriments (N, P et Si) dans les rĂ©servoirs de la Seine. L'assimilation des NO3â, PO43â, et DSi par le phytoplancton et la dĂ©nitrification benthique (pour NO3â) apparaissent comme les principaux processus gouvernant l'Ă©limination des nutriments. La prĂ©cipitation de CaCO3 (Carbonate de calcium) et l'Ă©mission de CO2 sont responsables de l'Ă©limination du DIC dans les trois rĂ©servoirs. Des explorations par le modĂšle montrent [...