26 research outputs found

    Clinical and polysomnographic course of childhood narcolepsy with cataplexy.

    Get PDF
    Our aim was to investigate the natural evolution of cataplexy and polysomnographic features in untreated children with narcolepsy with cataplexy. To this end, clinical, polysomnographic, and cataplexy-video assessments were performed at diagnosis (mean age of 10 Β± 3 and disease duration of 1 Β± 1 years) and after a median follow-up of 3 years from symptom onset (mean age of 12 Β± 4 years) in 21 children with narcolepsy with cataplexy and hypocretin 1 deficiency (tested in 19 subjects). Video assessment was also performed in two control groups matched for age and sex at first evaluation and follow-up and was blindly scored for presence of hypotonic (negative) and active movements. Patients' data at diagnosis and at follow-up were contrasted, compared with controls, and related with age and disease duration. At diagnosis children with narcolepsy with cataplexy showed an increase of sleep time during the 24 h; at follow-up sleep time and nocturnal sleep latency shortened, in the absence of other polysomnographic or clinical (including body mass index) changes. Hypotonic phenomena and selected facial movements decreased over time and, tested against disease duration and age, appeared as age-dependent. At onset, childhood narcolepsy with cataplexy is characterized by an abrupt increase of total sleep over the 24 h, generalized hypotonia and motor overactivity. With time, the picture of cataplexy evolves into classic presentation (i.e., brief muscle weakness episodes triggered by emotions), whereas total sleep time across the 24 h decreases, returning to more age-appropriate levels

    Complex movement disorders at disease onset in childhood narcolepsy with cataplexy

    Get PDF
    Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of hypocretin-producing neurons in the hypothalamus of likely autoimmune aetiology. Noting that children with narcolepsy often display complex abnormal motor behaviours close to disease onset that do not meet the classical definition of cataplexy, we systematically analysed motor features in 39 children with narcolepsy with cataplexy in comparison with 25 age- and sex-matched healthy controls. We found that patients with narcolepsy with cataplexy displayed a complex array of β€˜negative’ (hypotonia) and β€˜active’ (ranging from perioral movements to dyskinetic–dystonic movements or stereotypies) motor disturbances. β€˜Active’ and β€˜negative’ motor scores correlated positively with the presence of hypotonic features at neurological examination and negatively with disease duration, whereas β€˜negative’ motor scores also correlated negatively with age at disease onset. These observations suggest that paediatric narcolepsy with cataplexy often co-occurs with a complex movement disorder at disease onset, a phenomenon that may vanish later in the course of the disease. Further studies are warranted to assess clinical course and whether the associated movement disorder is also caused by hypocretin deficiency or by additional neurochemical abnormalities

    Role of the Lateral Paragigantocellular Nucleus in the Network of Paradoxical (REM) Sleep: An Electrophysiological and Anatomical Study in the Rat

    Get PDF
    The lateral paragigantocellular nucleus (LPGi) is located in the ventrolateral medulla and is known as a sympathoexcitatory area involved in the control of blood pressure. In recent experiments, we showed that the LPGi contains a large number of neurons activated during PS hypersomnia following a selective deprivation. Among these neurons, more than two-thirds are GABAergic and more than one fourth send efferent fibers to the wake-active locus coeruleus nucleus. To get more insight into the role of the LPGi in PS regulation, we combined an electrophysiological and anatomical approach in the rat, using extracellular recordings in the head-restrained model and injections of tracers followed by the immunohistochemical detection of Fos in control, PS-deprived and PS-recovery animals. With the head-restrained preparation, we showed that the LPGi contains neurons specifically active during PS (PS-On neurons), neurons inactive during PS (PS-Off neurons) and neurons indifferent to the sleep-waking cycle. After injection of CTb in the facial nucleus, the neurons of which are hyperpolarized during PS, the largest population of Fos/CTb neurons visualized in the medulla in the PS-recovery condition was observed in the LPGi. After injection of CTb in the LPGi itself and PS-recovery, the nucleus containing the highest number of Fos/CTb neurons, moreover bilaterally, was the sublaterodorsal nucleus (SLD). The SLD is known as the pontine executive PS area and triggers PS through glutamatergic neurons. We propose that, during PS, the LPGi is strongly excited by the SLD and hyperpolarizes the motoneurons of the facial nucleus in addition to local and locus coeruleus PS-Off neurons, and by this means contributes to PS genesis

    Gene Expression Profiling of Two Distinct Neuronal Populations in the Rodent Spinal Cord

    Get PDF
    BACKGROUND: In the field of neuroscience microarray gene expression profiles on anatomically defined brain structures are being used increasingly to study both normal brain functions as well as pathological states. Fluorescent tracing techniques in brain tissue that identifies distinct neuronal populations can in combination with global gene expression profiling potentially increase the resolution and specificity of such studies to shed new light on neuronal functions at the cellular level. METHODOLOGY/PRINCIPAL FINDINGS: We examine the microarray gene expression profiles of two distinct neuronal populations in the spinal cord of the neonatal rat, the principal motor neurons and specific interneurons involved in motor control. The gene expression profiles of the respective cell populations were obtained from amplified mRNA originating from 50-250 fluorescently identified and laser microdissected cells. In the data analysis we combine a new microarray normalization procedure with a conglomerate measure of significant differential gene expression. Using our methodology we find 32 genes to be more expressed in the interneurons compared to the motor neurons that all except one have not previously been associated with this neuronal population. As a validation of our method we find 17 genes to be more expressed in the motor neurons than in the interneurons and of these only one had not previously been described in this population. CONCLUSIONS/SIGNIFICANCE: We provide an optimized experimental protocol that allows isolation of gene transcripts from fluorescent retrogradely labeled cell populations in fresh tissue, which can be used to generate amplified aRNA for microarray hybridization from as few as 50 laser microdissected cells. Using this optimized experimental protocol in combination with our microarray analysis methodology we find 49 differentially expressed genes between the motor neurons and the interneurons that reflect the functional differences between these two cell populations in generating and transmitting the motor output in the rodent spinal cord
    corecore