19 research outputs found

    Острый рабдомиолиз

    Get PDF
    Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular contents into the systemic circulation. Acquired causes by direct injury to the sarcolemma are the most frequent. The inherited causes are: metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomalα-Methylacyl-CoA-racemase defect (AMACR); dystrophinopathies and myopathies; calcic causes with RYR1 mutations; inflammatory with myositis. Irrespective of the cause of rhabdomyolysis, the pathophysiologic events follow a common pathway, the ATP depletion leading to an increased intracellular calcium concentration and necrosis. Most episodes of rhabdomyolysis are triggered by an environmental stress, mostly fever. This condition is associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. We describe here an example of rhabdomyolysis related to high temperature, aldolase deficiency, in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. Thermolability was enhanced in patient myoblasts compared to control. The aldolase A deficiency was rescued by arginine supplementation in vitro. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines. Lipotoxicity may participate to myolysis. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease. Some other diseases involved in rhabdomyolysis may implicate pro-inflammatory cytokines and may be proinflammatory diseases.Острый рабдомиолиз – драматичное внезапное разрушение мышечных волокон скелетных мышц. К генетическим этиологическим факторам относят: метаболические расстройства, сопровождаемые дефицитом окисления жирных кислот, дефицитом липина-1, аномалии гликогенолиза и гликолиза, реже – дефицит митохондриальной дыхательной цепи, дефицит пурина и пероксизмальный дефицит α-метил-ацил-КоА-рацемазы (α-methyl-acyl-CoA-acemase, AMACR); структурные патологии в рамках дистрофинопатий и миопатий; аномалии кальциевого обмена с мутациями в гене RYR1; воспалительные реакции, ассоциированные с миозитом. Независимо от причины, дефицит аденозинтрифосфата в миоците приводит к повышению содержания внутриклеточного кальция и некрозу мышечных волокон. Провоцирующим фактором рабдомиолиза могут быть экзогенные факторы, среди которых травматизация мышц является самой частой причиной рабдомиолиза метаболического генеза. В случае лихорадки следует учитывать 2 фактора: повышение температуры тела и существование провоспалительных цитокинов. В статье описан случай рабдомиолиза у 3 детей от близкородственного брака, спровоцированный гипертермией и вызванный дефицитом альдолазы А, не сопровождаемой гемолитической анемией. В рассматриваемом случае миоглобинурия была всегда вызвана фебрильной температурой. В свою очередь, фермент альдолаза-А обладает тканеспецифичной термолабильностью: при тестируемых температурах он обнаружен в миобластах, но не в эритроцитах, что объясняет специфическую симптоматику у описываемых пациентов. Существуют предположения, что в клеточной липотоксичности участвуют так называемые жировые капли. В ходе исследований in vitro дефицит альдолазы А был возмещен добавлением аргинина. Другие типы рабдомиолиза метаболического генеза, вероятно, являются провоспалительными заболеваниями.перевод: Мария Олеговна Ковальчу

    Acute rhabdomyolysis

    No full text
    Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular contents into the systemic circulation. Acquired causes by direct injury to the sarcolemma are the most frequent. The inherited causes are: metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomalα-Methylacyl-CoA-racemase defect (AMACR); dystrophinopathies and myopathies; calcic causes with RYR1 mutations; inflammatory with myositis. Irrespective of the cause of rhabdomyolysis, the pathophysiologic events follow a common pathway, the ATP depletion leading to an increased intracellular calcium concentration and necrosis. Most episodes of rhabdomyolysis are triggered by an environmental stress, mostly fever. This condition is associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. We describe here an example of rhabdomyolysis related to high temperature, aldolase deficiency, in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. Thermolability was enhanced in patient myoblasts compared to control. The aldolase A deficiency was rescued by arginine supplementation in vitro. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines. Lipotoxicity may participate to myolysis. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease. Some other diseases involved in rhabdomyolysis may implicate pro-inflammatory cytokines and may be proinflammatory diseases

    ZnT8 Is a Major CD8(+) T Cell-Recognized Autoantigen in Pediatric Type 1 Diabetes

    Get PDF
    International audienceType 1 diabetes results from the destruction of beta-cells by an autoimmune T-cell response assisted by antigen-presenting B cells producing autoantibodies. CD8(+) T-cell responses against islet cell antigens, thought to play a central role in diabetes pathogenesis, can be monitored using enzyme-linked immunosorbent spot (ELISpot) assays. However, such assays have been applied to monitoring of adult patients only, leaving aside the large and increasing pediatric patient population. The objective of this study was twofold: 1) to develop a CD8(+). T-cell interferon-gamma ELISpot assay for pediatric patients and 2) to determine whether zinc transporter 8 (ZnT8), a recently described target of autoantibodies in a majority of patients, is also recognized by autoreactive CD8(+) T cells. Using DNA immunization of humanized mice, we identified nine HLA-A2-restricted ZnT8 epitopes. Among 36 HLA-A2(+) children with diabetes, 29 responded to ZnT8 epitopes, whereas only 3 of 16 HLA-A2(+) control patients and 0 of 17 HLA-A2(-) control patients responded. Some single ZnT8 epitopes performed as well as the group of epitopes in discriminating between patients and control individuals. Thus, ZnT8 is a major CD8(+) T-cell autoantigen, and ELISpot assays display similar performance in adult and pediatric type 1 diabetes. Diabetes 61:1779-1784, 201

    Normal human adipose tissue functions and differentiation in patients with biallelic LPIN1 inactivating mutations

    Get PDF
    International audienceLipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocytes metabolism and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known on the roles of lipin-1 in human adipocyte physiology. Apparently fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical and gene expression analysis of adipose tissue biopsies from human patients harbouring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of the adipocyte size. Nevertheless the adipose tissue develops without obvious histological signs of lipodystrophy and with a normal qualitative composition of the storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes under deficiency of a functional lipin-1

    Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis

    No full text
    International audienceLPIN1 mutations are responsible for inherited recurrent rhabdomyolysis, a life-threatening condition with no efficient therapeutic intervention. Here, we conduct a bedside-to-bench-and-back investigation to study the pathophysiology of lipin1 deficiency. We find that lipin1-deficient myoblasts exhibit a reduction in phosphatidylinositol-3-phosphate close to autophagosomes and late endosomes that prevents the recruitment of the GTPase Armus, locks Rab7 in the active state, inhibits vesicle clearance by fusion with lysosomes, and alters their positioning and function. Oxidized mitochondrial DNA accumulates in late endosomes, where it activates Toll-like receptor 9 (TLR9) and triggers inflammatory signaling and caspase-dependent myolysis. Hydroxychloroquine blocks TLR9 activation by mitochondrial DNA in vitro and may attenuate flares of rhabdomyolysis in 6 patients treated. We suggest a critical role for defective clearance of oxidized mitochondrial DNA that activates TLR9-restricted inflammation in lipin1-related rhabdomyolysis. Interventions blocking TLR9 activation or inflammation can improve patient care in vivo

    Mutations in human lipoyltransferase gene LIPT1 cause a Leigh disease with secondary deficiency for pyruvate and alpha-ketoglutarate dehydrogenase.

    Get PDF
    International audienceBACKGROUND: Synthesis and apoenzyme attachment of lipoic acid have emerged as a new complex metabolic pathway. Mutations in several genes involved in the lipoic acid de novo pathway have recently been described, but no mutation was found so far in genes involved in the specific process of attachment of lipoic acid to apoenzymes pyruvate dehydrogenase (PDHc), alpha-ketoglutarate dehydrogenase (alpha-KGDHc) and branched chain alpha-keto acid dehydrogenase (BCKDHc) complexes. METHODS: Exome capture was performed in a boy who developed Leigh disease following a gastroenteritis and had combined PDH and alpha-KGDH deficiency with a unique amino acid profile that partly ressembled E3 subunit (dihydrolipoamide dehydrogenase / DLD) deficiency. Functional studies on patient fibroblasts were performed. Lipoic acid administration was tested on the LIPT1 ortholog lip3 deletion strain yeast and on patient fibroblasts. RESULTS: Exome sequencing identified two heterozygous mutations (c.875C > G and c.535A > G) in the LIPT1 gene that encodes a mitochondrial lipoyltransferase which is thought to catalyze the attachment of lipoic acid on PDHc, alpha-KGDHc, and BCKDHc. Anti-lipoic acid antibodies revealed absent expression of PDH E2, BCKDH E2 and alpha-KGDH E2 subunits. Accordingly, the production of 14CO2 by patient fibroblasts after incubation with 14Cglucose, 14Cbutyrate or 14C 3OHbutyrate was very low compared to controls. cDNA transfection experiments on patient fibroblasts rescued PDH and alpha-KGDH activities and normalized the levels of pyruvate and 3OHbutyrate in cell supernatants. The yeast lip3 deletion strain showed improved growth on ethanol medium after lipoic acid supplementation and incubation of the patient fibroblasts with lipoic acid decreased lactate level in cell supernatants. CONCLUSION: We report here a putative case of impaired free lipoic acid attachment due to LIPT1 mutations as a cause of PDH and alpha-KGDH deficiencies. Our study calls for renewed efforts to understand the mechanisms of pathology of lipoic acid-related defects and their heterogeneous biochemical expression, in order to devise efficient diagnostic procedures and possible therapies

    A Thermolabile Aldolase A Mutant Causes Fever-Induced Recurrent Rhabdomyolysis without Hemolytic Anemia

    Get PDF
    International audienceAldolase A deficiency has been reported as a rare cause of hemolytic anemia occasionally associated with myopathy. We identified a deleterious homozygous mutation in the ALDOA gene in 3 siblings with episodic rhabdomyolysis without hemolytic anemia. Myoglobinuria was always triggered by febrile illnesses. We show that the underlying mechanism involves an exacerbation of aldolase A deficiency at high temperatures that affected myoblasts but not erythrocytes. The aldolase A deficiency was rescued by arginine supplementation in vitro but not by glycerol, betaine or benzylhydantoin, three other known chaperones, suggesting that arginine-mediated rescue operated by a mechanism other than protein chaperoning. Lipid droplets accumulated in patient myoblasts relative to control and this was increased by cytokines, and reduced by dexamethasone. Our results expand the clinical spectrum of aldolase A deficiency to isolated temperature-dependent rhabdomyolysis, and suggest that thermolability may be tissue specific. We also propose a treatment for this severe disease

    Lack of interaction between NEMO and SHARPIN impairs linear ubiquitination and NF-κB activation and leads to incontinentia pigmenti.

    No full text
    International audienceBackgroundIncontinentia pigmenti (IP; MIM308300) is a severe, male-lethal, X-linked, dominant genodermatosis resulting from loss-of-function mutations in the IKBKG gene encoding nuclear factor κB (NF-κB) essential modulator (NEMO; the regulatory subunit of the IκB kinase [IKK] complex). In 80% of cases of IP, the deletion of exons 4 to 10 leads to the absence of NEMO and total inhibition of NF-κB signaling. Here we describe a new IKBKG mutation responsible for IP resulting in an inactive truncated form of NEMO.ObjectivesWe sought to identify the mechanism or mechanisms by which the truncated NEMO protein inhibits the NF-κB signaling pathway.MethodsWe sequenced the IKBKG gene in patients with IP and performed complementation and transactivation assays in NEMO-deficient cells. We also used immunoprecipitation assays, immunoblotting, and an in situ proximity ligation assay to characterize the truncated NEMO protein interactions with IKK-α, IKK-β, TNF receptor-associated factor 6, TNF receptor-associated factor 2, receptor-interacting protein 1, Hemo-oxidized iron regulatory protein 2 ligase 1 (HOIL-1), HOIL-1-interacting protein, and SHANK-associated RH domain-interacting protein. Lastly, we assessed NEMO linear ubiquitination using immunoblotting and investigated the formation of NEMO-containing structures (using immunostaining and confocal microscopy) after cell stimulation with IL-1β.ResultsWe identified a novel splice mutation in IKBKG (c.518+2T>G, resulting in an in-frame deletion: p.DelQ134_R256). The mutant NEMO lacked part of the CC1 coiled-coil and HLX2 helical domain. The p.DelQ134_R256 mutation caused inhibition of NF-κB signaling, although the truncated NEMO protein interacted with proteins involved in activation of NF-κB signaling. The IL-1β-induced formation of NEMO-containing structures was impaired in fibroblasts from patients with IP carrying the truncated NEMO form (as also observed in HOIL-1(-/-) cells). The truncated NEMO interaction with SHANK-associated RH domain-interacting protein was impaired in a male fetus with IP, leading to defective linear ubiquitination.ConclusionWe identified a hitherto unreported disease mechanism (defective linear ubiquitination) in patients with IP
    corecore