39 research outputs found

    Developing advanced models of biological membranes with hydrogenous and deuterated natural glycerophospholipid mixtures

    Get PDF
    Cellular membranes are complex systems that consist of hundreds of different lipid species. Their investigation often relies on simple bilayer models including few synthetic lipid species. Glycerophospholipids (GPLs) extracted from cells are a valuable resource to produce advanced models of biological membranes. Here, we present the optimisation of a method previously reported by our team for the extraction and purification of various GPL mixtures from Pichia pastoris. The implementation of an additional purification step by High Performance Liquid Chromatography-Evaporative Light Scattering Detector (HPLC-ELSD) enabled for a better separation of the GPL mixtures from the neutral lipid fraction that includes sterols, and also allowed for the GPLs to be purified according to their different polar headgroups. Pure GPL mixtures at significantly high yields were produced through this approach. For this study, we utilised phoshatidylcholine (PC), phosphatidylserine (PS) and phosphatidylglycerol (PG) mixtures. These exhibit a single composition of the polar head, i.e., PC, PS or PG, but contain several molecular species consisting of acyl chains of varying length and unsaturation, which were determined by Gas Chromatography (GC). The lipid mixtures were produced both in their hydrogenous (H) and deuterated (D) versions and were used to form lipid bilayers both on solid substrates and as vesicles in solution. The supported lipid bilayers were characterised by quartz crystal microbalance with dissipation monitoring (QCM-D) and neutron reflectometry (NR), whereas the vesicles by small angle X-ray (SAXS) and neutron scattering (SANS). Our results show that despite differences in the acyl chain composition, the hydrogenous and deuterated extracts produced bilayers with very comparable structures, which makes them valuable to design experiments involving selective deuteration with techniques such as NMR, neutron scattering or infrared spectroscopy.We are grateful to the ILL and the ESRF for awarding beamtimes (DOI: 105291/ILL-DATA.EASY-975) and (DOI: https://doi.org/10.15151/ESRF-DC-1026409781) respectively. Lipids were produced in the L-Lab (www.ill.eu/L-Lab) facility within the PSCM initiative at the ILL from biomass prepared in the D-Lab. We are grateful to Hanna Wacklin-Knecht (ESS) for useful discussions. This project received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N 654000 (SINE2020) and from the League of advanced European Neutron Sources (LENS). CB, YYB and the GEMELI Lipidomic platform were supported by Agence Nationale de la Recherche, France (Project ApicoLipiAdapt grant ANR-21-CE44-0010), the Fondation pour la Recherche Médicale (FRM EQU202103012700), Laboratoire d'Excellence Parafrap, France (grant ANR-11-LABX-0024), LIA-IRP CNRS Program (Apicolipid project), the Université Grenoble Alpes (IDEX ISP Apicolipid), Indo-French Collaborative Research Program Grant CEFIPRA (Project 6003-1), and Région Auvergne Rhone-Alpes for the lipidomics analyses platform (Grant IRICE Project GEMELI). A.M. acknowledges the financial support from MICINN under grant PID2021-129054NA-I00.Peer reviewe

    Apicoplast-localized lysophosphatidic acid precursor assembly is required for bulk phospholipid synthesis in toxoplasma gondii and relies on an algal/plant-like glycerol 3-phosphate acyltransferase

    Full text link
    Most apicomplexan parasites possess a non-photosynthetic plastid (the apicoplast), which harbors enzymes for a number of metabolic pathways, including a prokaryotic type II fatty acid synthesis (FASII) pathway. In Toxoplasma gondii, the causative agent of toxoplasmosis, the FASII pathway is essential for parasite growth and infectivity. However, little is known about the fate of fatty acids synthesized by FASII. In this study, we have investigated the function of a plant-like glycerol 3-phosphate acyltransferase (TgATS1) that localizes to the T. gondii apicoplast. Knock-down of TgATS1 resulted in significantly reduced incorporation of FASII-synthesized fatty acids into phosphatidic acid and downstream phospholipids and a severe defect in intracellular parasite replication and survival. Lipidomic analysis demonstrated that lipid precursors are made in, and exported from, the apicoplast for de novo biosynthesis of bulk phospholipids. This study reveals that the apicoplast-located FASII and ATS1, which are primarily used to generate plastid galactolipids in plants and algae, instead generate bulk phospholipids for membrane biogenesis in T. gondii

    Role of phosphatidic acid in plant galactolipid synthesis

    Get PDF
    Phosphatidic acid (PA) is a precursor metabolite for phosphoglycerolipids and also for galactoglycerolipids, which are essential lipids for formation of plant membranes. PA has in addition a main regulatory role in a number of developmental processes notably in the response of the plant to environmental stresses. We review here the different pools of PA dispatched at different locations in the plant cell and how these pools are modified in different growth conditions, particularly during plastid membrane biogenesis and when the plant is exposed to phosphate deprivation. We analyze how these modifications can affect galactolipid synthesis by tuning the activity of MGD1 enzyme allowing a coupling of phospho- and galactolipid metabolisms. Some mechanisms are considered to explain how physicochemical properties of PA allow this lipid to act as a central internal sensor in plant physiology

    Variation in Lipid Species Profiles among Leukemic Cells Significantly Impacts Their Sensitivity to the Drug Targeting of Lipid Metabolism and the Prognosis of AML Patients

    No full text
    International audienceSeveral studies have linked bad prognoses of acute myeloid leukemia (AML) to the ability of leukemic cells to reprogram their metabolism and, in particular, their lipid metabolism. In this context, we performed “in-depth” characterization of fatty acids (FAs) and lipid species in leukemic cell lines and in plasma from AML patients. We firstly showed that leukemic cell lines harbored significant differences in their lipid profiles at steady state, and that under nutrient stress, they developed common mechanisms of protection that led to variation in the same lipid species; this highlights that the remodeling of lipid species is a major and shared mechanism of adaptation to stress in leukemic cells. We also showed that sensitivity to etomoxir, which blocks fatty acid oxidation (FAO), was dependent on the initial lipid profile of cell lines, suggesting that only a particular “lipidic phenotype” is sensitive to the drug targeting of FAO. We then showed that the lipid profiles of plasma samples from AML patients were significantly correlated with the prognosis of patients. In particular, we highlighted the impact of phosphocholine and phosphatidyl-choline metabolism on patients’ survival. In conclusion, our data show that balance between lipid species is a phenotypic marker of the diversity of leukemic cells that significantly influences their proliferation and resistance to stress, and thereby, the prognosis of AML patients
    corecore