104 research outputs found

    Identification of biomarkers in ductal carcinoma in situ of the breast with microinvasion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Widespread use of mammography in breast cancer screening has led to the identification of increasing numbers of patients with ductal carcinoma <it>in situ </it>(DCIS). DCIS of the breast with an area of focal invasion 1 mm or less in diameter is defined as DCIS with microinvasion, DCIS-Mi. Identification of biological differences between DCIS and DCIS-Mi may aid in understanding of the nature and causes of the progression of DCIS to invasiveness.</p> <p>Methods</p> <p>In this study, using resected breast cancer tissues, we compared pure DCIS (52 cases) and DCIS-Mi (28 cases) with regard to pathological findings of intraductal lesions, biological factors, apoptosis-related protein expression, and proliferative capacity through the use of immunohistochemistry and the TdT-mediated dUTP-biotin nick end labeling (TUNEL) method.</p> <p>Results</p> <p>There were no differences in biological factors between DCIS and DCIS-Mi, with respect to levels of estrogen receptor, progesterone receptor, and human epidermal growth factor receptor type 2. The frequency of necrosis and positive expression ratio of survivin and Bax were significantly higher in DCIS-Mi than in DCIS. In addition, apoptotic index, Ki-67 index, and positive Bcl-2 immunolabeling tended to be higher in DCIS-Mi than in DCIS. Multivariate analysis revealed that the presence of necrosis and positive survivin expression were independent factors associated with invasion.</p> <p>Conclusion</p> <p>Compared with DCIS, DCIS-Mi is characterized by a slightly elevated cell proliferation capacity and enhanced apoptosis within the intraductal lesion, both of which are thought to promote the formation of cell necrotic foci. Furthermore, the differential expression of survivin may serve in deciding the response to therapy and may have some prognostic significance.</p

    Genome-wide association study revealed novel loci which aggravate asymptomatic hyperuricaemia into gout

    Get PDF
    Objective The first ever genome-wide association study (GWAS) of clinically defined gout cases and asymptomatic hyperuricaemia (AHUA) controls was performed to identify novel gout loci that aggravate AHUA into gout. Methods We carried out a GWAS of 945 clinically defined gout cases and 1003 AHUA controls followed by 2 replication studies. In total, 2860 gout cases and 3149 AHUA controls (all Japanese men) were analysed. We also compared the ORs for each locus in the present GWAS (gout vs AHUA) with those in the previous GWAS (gout vs normouricaemia). Results This new approach enabled us to identify two novel gout loci (rs7927466 of CNTN5 and rs9952962 of MIR302F) and one suggestive locus (rs12980365 of ZNF724) at the genome-wide significance level (p<5.0×10– 8). The present study also identified the loci of ABCG2, ALDH2 and SLC2A9. One of them, rs671 of ALDH2, was identified as a gout locus by GWAS for the first time. Comparing ORs for each locus in the present versus the previous GWAS revealed three ‘gout vs AHUA GWAS’-specific loci (CNTN5, MIR302F and ZNF724) to be clearly associated with mechanisms of gout development which distinctly differ from the known gout risk loci that basically elevate serum uric acid level. Conclusions This meta-analysis is the first to reveal the loci associated with crystal-induced inflammation, the last step in gout development that aggravates AHUA into gout. Our findings should help to elucidate the molecular mechanisms of gout development and assist the prevention of gout attacks in high-risk AHUA individuals

    Genome-wide meta-analysis identifies multiple novel loci associated with serum uric acid levels in Japanese individuals

    Get PDF
    Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose expression levels are associated with SUA-increasing alleles. These genes are enriched for the UniProt transport term, suggesting the importance of transport-related genes in SUA regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/gout

    Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170.

    Get PDF
    We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.352

    Clinical significance of plasma cell-free DNA mutations in PIK3CA, AKT1, and ESR1 gene according to treatment lines in ER-positive breast cancer

    No full text
    Abstract The somatic activation of PI3K/AKT pathway mutations, PIK3CA and AKT1, and ESR1 mutations in plasma cell-free DNA (cfDNA) has been studied as a non-invasive procedure to quickly assess and monitor disease progression or therapeutic effect in breast cancer (BC) patients, but the clinical significance of these mutations in late treatment lines (TLs) remains unclear. The subjects of this study were a total of 251 plasma samples from 128 estrogen receptor-positive (ER+) BC patients. Of these plasma samples, 133 were from 73 primary BC (PBC) patients, and 118 plasma samples were from 68 metastatic BC (MBC) patients. We developed droplet digital PCR (ddPCR) assays to verify the clinical significance of PIK3CA, AKT1, and ESR1 mutations in these patients. cfDNA PIK3CA mutations were observed in 15.1% of the PBC patients, while a cfDNA AKT1 mutation was observed in 1.4% of patients, and cfDNA ESR1 mutations were observed in 2.7% of patients. Patients with detectable cfDNA PIK3CA mutations were not associated with clinical outcomes. According to the TL, the prevalence of the PIK3CA and ESR1 mutations in cfDNA were lower in early TLs compared with late TLs. In the early TL group, patients with cfDNA PIK3CA mutations had a shorter time to treatment failure (TTF) than patients without mutations (P = 0.035). However, there was no statistically significant difference between patients with or without cfDNA ESR1 mutations. However, in the late TL group, patients with cfDNA ESR1 mutations had a shorter TTF than patients without mutations (P = 0.048). However, there was no statistically significant difference between patients with or without cfDNA PIK3CA mutations. Since the prevalence of cfDNA AKT1 mutation is low in both PBC and MBC patients, the impact of AKT1 mutations on the prognosis remains unclear. We have demonstrated the difference in the clinical significance of the hotspot PIK3CA, AKT1, and ESR1 mutations in cfDNA for each TL in ER+ BC patients
    corecore