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Genome-wide meta-analysis identifies multiple
novel loci associated with serum uric acid levels in
Japanese individuals
Masahiro Nakatochi et al.#

Gout is a common arthritis caused by elevated serum uric acid (SUA) levels. Here we

investigated loci influencing SUA in a genome-wide meta-analysis with 121,745 Japanese

subjects. We identified 8948 variants at 36 genomic loci (P<5 × 10–8) including eight novel

loci. Of these, missense variants of SESN2 and PNPLA3 were predicted to be damaging to the

function of these proteins; another five loci—TMEM18, TM4SF4, MXD3-LMAN2, PSORS1C1-

PSORS1C2, and HNF4A—are related to cell metabolism, proliferation, or oxidative stress; and

the remaining locus, LINC01578, is unknown. We also identified 132 correlated genes whose

expression levels are associated with SUA-increasing alleles. These genes are enriched for

the UniProt transport term, suggesting the importance of transport-related genes in SUA

regulation. Furthermore, trans-ethnic meta-analysis across our own meta-analysis and the

Global Urate Genetics Consortium has revealed 15 more novel loci associated with SUA. Our

findings provide insight into the pathogenesis, treatment, and prevention of hyperuricemia/

gout.
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Serum uric acid (SUA) is reported to have an antioxidative
effect1,2, whereas elevated SUA, or hyperuricemia, results in
crystal deposition and causes gout3. Gout is a common

disease characterized by noninfectious acute arthritis. Both gout
and hyperuricemia can result from an unhealthful lifestyle4–6, but
recent genetic studies, including genome-wide association studies
(GWASs), have also revealed a genetic contribution to the
development of these conditions, with this contribution being
larger than that for other common diseases7–12. Moreover, epi-
demiologic studies have revealed their relationship among other
diseases such as cardiovascular diseases13,14, indicating the
importance of elucidation of the pathophysiology of these con-
ditions. To date, several GWASs of SUA have been performed
with Caucasian populations15–24 as well as Asian populations
including Japanese subjects25,26. Although there are genetic dif-
ferences between Caucasian and Asian populations, they have
many shared associated genes3,27 that exert major effects, such as
ABCG2, SLC2A9, and SLC22A12, all of which are well-known
representative urate transporters in humans and which are
important as therapeutic target molecules for gout and hyperur-
icemia. Therefore, identifying new loci may not only help eluci-
date the pathophysiology of these diseases, but may also reveal
their target molecules, taking into account the fact that these
diseases have a broader genetic basis than other common diseases
as described above. Furthermore, the gene expression patterns to
which the identified loci contribute should enable us to estimate
effective pathways for drug delivery. In the present study, we have
investigated the genetic loci that influence SUA with more than
120,000 Japanese individuals in a genome-wide meta-analysis and
have compared our findings with those of previous GWASs24,28.
We identified 36 loci for SUA, including eight previously unre-
ported loci, that suggest key cellular processes which contribute to
elevated serum uric acid levels, followed by the identification of
15 more loci by trans-ethnic meta-analysis.

Results
Genome-wide meta-analysis. We performed a genome-wide
meta-analysis based on three Japanese cohorts including those of
the Japan Multi-institutional Collaborative Cohort (J-MICC)
Study29,30, the Kita-Nagoya Genomic Epidemiology (KING)
Study31,32, and the BioBank Japan (BBJ) Project33,34. Detailed
information regarding the baseline characteristics of the study

subjects, genotyping arrays, and imputation is summarized in
Supplementary Tables 1 and 2. We performed a genome-wide
meta-analysis for SUA with data sets encompassing 121,745
Japanese subjects. Intercepts of linkage disequilibrium (LD) score
regression and the genomic control lambda for each study are
shown in Supplementary Table 2. The intercepts of LD score
regression and the genomic control lambda for our meta-analysis
were 1.043 and 1.165, respectively. Genomic control adjustment
was not applied for genomic control at the level of each study
because intercepts of LD score regression did not show inflation
of test statistics. The quantile–quantile (Q–Q) plot for P values is
shown in Supplementary Fig. 1. The results of the meta-analysis
identified 8948 variants at 36 genetic loci with a P value of <5 ×
10–8 for SUA (Fig. 1). Among these 36 genetic loci, 8 were not
previously reported, 10 were recently identified in a GWAS for
SUA in Japanese performed by BBJ28, and 18 were previously
identified by other GWASs for SUA15–17,19,20,24–26. The eight
novel loci were the following: rs74896528 of SESN2, rs10188118
of LOC105373352 - TMEM18, rs6774054 of TM4SF4, rs11952102
of MXD3-LMAN2, rs16898823 of PSORS1C1-PSORS1C2,
rs8024067 of LINC01578, rs6031598 of HNF4A, and rs2281293 of
PNPLA3.

Sentinel single-nucleotide polymorphisms (SNPs) with the
lowest P values for SUA at each of the 36 loci are shown in
Table 1. Association results of each study are shown in
Supplementary Data 1. We determined the effect allele frequen-
cies (EAFs) of these sentinel SNPs for each population in 1000
Genomes phase 3 (Supplementary Data 2). The EAFs indicated
that rs74896528 of SESN2 at chromosome 1p35.3 is an East
Asian–specific SNP. Regional association plots for the eight loci
newly identified in the present study are shown in Fig. 2. The BBJ
data recently revealed that SNPs located at 27 loci showed
genome-wide significant associations with SUA including 10
novel loci (Table 1)28. About the 27 reported SNPs, we compared
the results in our meta-analysis with the recent results by BBJ28

(Supplementary Data 3), with regional association plots for the 10
loci also identified in the present study being shown in
Supplementary Figure 2. The results for these 27 SNPs, identified
in our meta-analysis, revealed a higher level of significance for the
association with SUA in our meta-analysis than in the BBJ study.
A European GWAS for SUA was previously performed by the
Global Urate Genetics Consortium (GUGC)24. We examined
the publicly available data provided by the GUGC-based study for
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Fig. 1 Manhattan plot for the meta-analysis of SUA. The horizontal line represents the genome-wide significance level (α= 5 × 10−8). Eighteen loci shown
in orange were also recently identified by BBJ as being associated with SUA, 10 loci in blue were also identified by other studies and those in red indicate
eight novel loci identified in the present study. Blue triangles represent loci containing SNPs with P values of <1 × 10−20. SUA serum uric acid, BBJ BioBank
Japan

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0339-0

2 COMMUNICATIONS BIOLOGY |           (2019) 2:115 | https://doi.org/10.1038/s42003-019-0339-0 | www.nature.com/commsbio

www.nature.com/commsbio


the sentinel SNPs or SNPs showing high LD (r2 of ≥0.8 in JPT of
1000 Genomes phase 3) with the sentinel SNPs at the eight novel
loci identified in the present study. Three of these loci, including
5q35.3, 20q13.12, and 22q13.31, were significantly associated with
SUA in the GUGC-based GWAS, with the same direction of
effect size as in our study (Supplementary Table 3). The 2p25.3
locus was nominally significantly associated with SUA. Although
the 3q25.1 locus was not significantly associated with SUA in the
GUGC-based study, it was nominally significantly associated with
gout in the same study.

Functional annotations for novel loci. We searched for SNPs at
the newly identified loci associated with SUA that were associated
with gene expression level or amino acid substitution of protein
and that were in high LD (r2 of ≥0.8 in JPT of 1000 Genomes
phase 3) with sentinel SNPs and had a P value of <1 × 10–6 for
SUA in our meta-analysis. We identified two nonsynonymous
SNPs of SESN at the 1p35.3 locus and PNPLA3 at the 22q13.31
locus (Supplementary Table 4), and we found that six of the eight
novel loci harbor variants with expression quantitative trait loci

(eQTLs) for at least one tissue in the Genotype-Tissue Expression
(GTEx) database35 (Supplementary Data 4). The two non-
synonymous SNPs, rs738409 (I148M) of PNPLA3, and
rs74896528 (P87S) of SESN2, were predicted by SIFT, PolyPhen2
HVAR, and PolyPhen2 HDIV to be damaging or probably
damaging.

Gene set enrichment analysis of SUA-associated loci. We
searched for genes whose expression level was associated with
SUA-associated SNPs in at least one tissue in the GTEx database.
We found that 24 of the 36 loci identified in the present study
harbor variants with eQTLs in at least one tissue in the GTEx
database. We also identified 71 positively correlated genes whose
expression level is increased by SUA-increasing alleles and 76
negatively correlated genes whose expression level is decreased by
SUA-increasing alleles (Supplementary Data 5). Functional ana-
lysis of the sets of positively correlated genes and negatively
correlated genes were performed with the Database for Annota-
tion, Visualization, and Integrated Discovery (DAVID)36. For the
positively correlated genes, the terms “Williams-Beuren

Table 1 Sentinel SNPs associated with SUA in Japanese as identified in the meta-analysis

SNP Locus Chr Position Gene Alleles EAF Betaa ± SE P value I2

Effect Noneffect

Novel loci
rs74896528 1p35.3 1 28598287 SESN2 T C 0.057 −0.057 ± 0.010 8.42 × 10−9 0
rs10188118 2p25.3 2 653623 LOC105373352, TMEM18 C G 0.864 0.035 ± 0.006 8.60 × 10−9 48.7
rs6774054 3q25.1 3 149211699 TM4SF4 A G 0.337 0.024 ± 0.004 1.58 × 10−8 0
rs11952102 5q35.3 5 176740704 MXD3, LMAN2 A G 0.448 0.022 ± 0.004 4.24 × 10−8 0
rs16898823 6p21.33 6 31106606 PSORS1C1, PSORS1C2 A T 0.900 0.037 ± 0.007 2.55 × 10−8 0
rs8024067 15q26.1 15 93439224 LINC01578 T G 0.158 −0.034 ± 0.006 8.41 × 10−9 40.9
rs6031598 20q13.12 20 43056149 HNF4A T G 0.378 −0.023 ± 0.004 2.90 × 10−8 27.5
rs2281293 22q13.31 22 44334842 PNPLA3 T C 0.559 0.024 ± 0.004 4.99 × 10−9 0
Loci also identified by BBJ28

rs811372 2p15 2 61429568 USP34 T C 0.367 0.026 ± 0.004 7.97 × 10−10 4
rs10857147 4q21.21 4 81181072 PRDM8, FGF5 A T 0.699 0.032 ± 0.005 1.31 × 10−11 17.2
rs13230625 7p22.3 7 1286244 UNCX, MICALL2 A G 0.318 0.027 ± 0.004 4.82 × 10−10 0
rs7835379 8q22.1 8 95975080 TP53INP1, NDUFAF6 A G 0.755 0.032 ± 0.005 7.41 × 10−12 46.6
rs9416703 10q21.1 10 60283008 BICC1 A C 0.525 −0.036 ± 0.004 1.70 × 10−18 0
rs11202346 10q23.2 10 88908912 FAM35A T G 0.225 0.035 ± 0.005 4.12 × 10−12 0
rs1886603 10q26.11 10 119482303 EMX2, RAB11FIP2 A G 0.374 0.027 ± 0.004 3.22 × 10−11 0
rs2220970 11p15.4 11 9857749 SBF2 A G 0.342 0.024 ± 0.004 1.12 × 10−8 0
rs963837 11p14.1 11 30749090 MPPED2, DCDC1 T C 0.656 0.028 ± 0.005 8.41 × 10−10 5.6
rs6026578 20q13.32 20 57463472 LOC101927932 C G 0.278 0.028 ± 0.005 5.48 × 10−10 0
Loci also identified by other studies
rs1797052 1q21.1 1 145727683 PDZK1 T C 0.185 0.041 ± 0.005 2.57 × 10−15 0
rs4072037 1q22 1 155162067 MUC1 T C 0.828 −0.048 ± 0.005 6.93 × 10−20 62.7
rs1260326 2p23.3 2 27730940 GCKR T C 0.559 0.036 ± 0.004 7.56 × 10−19 0
rs16856823 2q31.1 2 170200452 LRP2 A T 0.808 −0.039 ± 0.005 6.61 × 10−14 0
rs6445559 3p21.1 3 53099466 SFMBT1, RFT1 A G 0.561 0.029 ± 0.004 2.53 × 10−12 2.6
rs7679724 4p16.1 4 9985376 SLC2A9 T G 0.586 0.130 ± 0.004 1.67 × 10−224 81.6
rs4148155 4q22.1 4 89054667 ABCG2 A G 0.705 −0.115 ± 0.004 2.05 × 10−149 0
rs2762353 6p22.2 6 25794431 SLC17A1 A G 0.160 −0.054 ± 0.005 8.68 × 10−24 11.5
rs9394948 6p21.1 6 43334755 ZNF318 A C 0.341 0.032 ± 0.004 1.65 × 10−13 9
rs17145750 7q11.23 7 73026378 MLXIPL T C 0.102 −0.038 ± 0.007 5.85 × 10−9 0
rs1828911 8q21.11 8 76462547 HNF4G T C 0.575 −0.038 ± 0.004 8.08 × 10−21 0
rs57633992 11q13.1 11 64424967 NRXN2 A C 0.054 −0.668 ± 0.010 <1 × 10−300 68.8
rs79105258 12q24.12 12 111718231 CUX2 A C 0.254 −0.078 ± 0.005 1.91 × 10−56 0
rs73436803 15q24.2 15 75619201 GOLGA6D, COMMD4 T C 0.099 −0.043 ± 0.008 1.38 × 10−8 0
rs4966024 15q26.3 15 99295570 IGF1R A G 0.486 −0.033 ± 0.004 4.43 × 10−16 0
rs244423 16q22.1 16 69610002 NFAT5 A G 0.156 0.035 ± 0.006 2.00 × 10−10 40.5
rs73575095 16q23.2 16 79750332 MAF, MAFTRR T C 0.719 0.035 ± 0.005 4.03 × 10−15 0
rs9895661 17q23.2 17 59456589 BCAS3 T C 0.475 0.044 ± 0.005 9.20 × 10−23 0

Chr chromosome, SUA serum uric acid
aThe beta value represents change in z-score per effect allele copy for the SNP
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of the association of each SNP with SUA. Panels a–h present plots for chromosome (chr) 1p35.3, 2p25.3, 3q25.1, 5q35.3, 6p21.33, 15q26.1, 20q13.12, or
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syndrome”, “sodium”, “transport”, “sodium transport”, and
“alternative splicing” were enriched (Supplementary Table 5). For
the negatively correlated genes, the term “Williams–Beuren syn-
drome” was enriched.

Comparison between Japanese and European GWASs for SUA.
SNPs located at 28 loci were recently found to show genome-wide
significant associations with SUA based on data from individuals
of European ancestry in the GUGC24. We examined the results
obtained for these SNPs in our meta-analysis (Supplementary
Data 6). Twenty-one of these 25 SNPs showed nominal or
genome-wide significant associations with SUA in our meta-
analysis, with the same direction of effect size in both studies.

We compared the SNP-based heritability (h2) of SUA in our
Japanese meta-analysis and the GUGC-based study24. The
heritability estimates were calculated from summary statistics of
1,447,573 SNPs, which were assessed in both studies and have
MAF ≥1% in both studies. The h2 (standard error (SE)) estimates
were 14.0 % (4.3%) for our Japanese study and 14.4% (3.9%) for
the European study. Furthermore, we calculated the genetic
correlation between Japanese and European studies employing
the same data sets. The genetic correlation ρge (SE) was analyzed
(0.591 (0.294), P value= 0.164), and was not significantly less
than 1.

Trans-ethnic meta-analysis with the use of GUGC-based study.
We performed the trans-ethnic meta-analysis across our meta-
analysis and the GUGC-based study to carry out fine-mapping
analysis and identify further novel loci associated with SUA. We
observed genome-wide significant (log10 (Bayes’ factor) of >6)
association signals at 59 loci (Fig. 3), of which 15 were novel.
Shown in Supplementary Data 7 are sentinel SNPs with the
highest log10 (Bayes’ factor) for SUA at each of these 15 novel loci
(rs302684 of TRABD2B-SKINT1L, rs2765545 of CCDC18, rs715
of CPS1, rs9942075 of TFDP2, rs10471103 of INPP4B-
LOC105377623, rs461660 of RAI14, rs2760181 of KIAA0319,
rs6928482 of HLA-DQB1, rs10971419 of B4GALT1, rs2195525 of
USP2, rs626277 of DACH1, rs2957742 of MYO9A, rs12451900 of
ZBTB4, rs164009 of QRICH2, and rs1035941 of INSR).

Discussion
In a genome-wide meta-analysis performed with 121,745 Japa-
nese subjects, we have here identified eight novel loci significantly

associated with SUA. Moreover, five of these loci were replicated
in Caucasian populations.

Gout, which develops as a consequence of hyperuricemia, is a
form of arthritis known from the time of ancient Egypt37, and
modern Japanese are genetically known to be more susceptible to
hyperuricemia and gout,10,38. To our knowledge, the present
study is the largest genome-wide meta-analysis performed for
SUA to date, and it thus provides important insight into the
genetic background of hyperuricemia and gout.

Uric acid or urate is an end metabolite of purines such as
adenosine derived from ATP and guanine derived from DNA.
Urate is produced predominantly in the liver and is excreted by
the kidneys and the intestine9,39,40. Genes for urate transporters
and proteins associated with cell metabolism might therefore be
expected to be associated with SUA. Indeed, urate transporter
genes such as SLC22A12 (also known as URAT1), SLC2A9
(GLUT9), and ABCG2 (BCRP) have been markedly associated
with SUA, hyperuricemia, and gout7–12.

Among the eight novel loci identified in our study, TMEM18,
TM4SF4, MXD3, and HNF4A are related to cell metabolism or
proliferation. TMEM18 is a highly conserved gene related to
obesity and plays a role in the central control of appetite and body
weight regulation41–43. TM4SF4 is associated with gallstone dis-
ease and has been implicated in both liver regeneration and
pancreas development44,45. Both MXD3 and HNF4A encode
transcription factors. MXD3 forms a heterodimer with the
cofactor MAX and is thought to promote uncontrolled cell pro-
liferation and tumorigenesis46,47. HNF4A is associated with
nonalcoholic steatohepatitis48 and plays a role in hepatic gluco-
neogenesis and lipid metabolism49. In addition, HNF4A controls
gene expression in pancreatic islets, with HNF4A mutations
having been associated with maturity-onset diabetes of the young
type 1 and hyperinsulinemic hypoglycemia50. Furthermore, three
of the eight novel loci identified in the present study harbor genes
related to oxidative stress and inflammation: SESN2, PSORS1C1,
and PNPLA3. SESN2 encodes a highly conserved stress-inducible
metabolic protein that protects cells from stressors such as
hypoxia, starvation, DNA damage, and oxidative stress51,52.
PSORS1C1 and PSORS1C2 encode psoriasis susceptibility 1 can-
didates 1 and 2, respectively. PSORS1C1 is implicated in synovial
inflammation and bone destruction in rheumatoid arthritis53,
which, like gout, is a common type of arthritis. Its expression is
inhibited in synovial fibroblasts affected by rheumatoid arthritis,
which results in a reduction in interleukin-17, osteoclastogenic
factor, and interleukin-1 levels as well as attenuation of cell
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proliferation54. PNPLA3 encodes a membrane protein located at
the surface of hepatocyte lipid droplets55. A GWAS of nonalco-
holic fatty liver disease identified PNPLA3 as a major genetic
determinant of fatty liver and hepatic fat content56. PNPLA3 is
also associated with inflammation, fibrosis, and the development
of hepatocellular carcinoma55,57. Thus, novel loci associated with
SUA were also related to oxidative stress and inflammation.
Given that uric acid has an antioxidative effect1,2, loci related to
oxidative stress or inflammation might also be expected to be
associated with SUA. However, further molecular functional
analyses are required to confirm these associations. The func-
tional relation of the last of the eight novel loci identified in the
present study, LINC01578, to SUA is unknown. Indeed,
LINC01578 encodes a long intergenic non-protein-coding RNA
of unknown function. It is also possible that a gene located near
LINC01578 is actually responsible for the observed association
with SUA.

Previous candidate analyses7,8 and GWASs11,12,58 of clinically
defined gout identified nonsynonymous variants of gout sus-
ceptibility genes such as ABCG2 (rs72552713, Q126X; rs2231142,
Q141K) and GCKR (rs1260326, L446P). SLC22A12 (URAT1) and
SLC2A9 (GLUT9) are also genetic loci that influence SUA and
encode urate transporters that mediate physiological urate reab-
sorption in the kidney59,60. We previously showed that dys-
functional nonsynonymous variants of SLC22A12 and SLC2A9
are responsible for renal hypouricemia type 159,60 and type 243,
respectively. The present study also identified missense SNPs at
two loci, rs738409 (I148M) of PNPLA3 and rs74896528 (P87S) of
SESN2, that are predicted to impair the function of the encoded
proteins (Supplementary Table 4). The rs738409 (I148M) poly-
morphism of PNPLA3 is in LD with rs2281293, which showed the
most significant association with SUA at this locus in our
genome-wide meta-analysis. The rs2281293 SNP of PNPLA3 is
also an eQTL for this gene (Supplementary Data 4). On the other
hand, rs74896528 of SESN2 has not been identified as an eQTL
(Supplementary Data 4), and its SNP was not reported in the
previous study based on GUGC data24 because of its low fre-
quency in Caucasian populations (Supplementary Data 2). These
results suggest that this missense (P87S) variant of SESN2
(rs74896528) is a novel locus that is associated with SUA speci-
fically in Japanese or Asian populations.

The 28 loci identified in the European population of the GUGC
study, SNPs at 21 loci showed a nominal or genome-wide sig-
nificant association with SUA in our meta-analysis (Supplemen-
tary Data 6), again with the same direction of effect size. The
SNP-based heritability for Japanese was 14.0%, and was similar to
the 14.6% seen in Europeans. The genetic correlation between
Japanese and Europeans was not significantly <1. These results
suggest the possibility that most genetic causal variants of SUA
are shared across ancestries.

The present study also identified 132 correlated genes whose
expression levels are associated with SUA-increasing alleles
(Supplementary Data 5). UniProt term enrichment analysis
showed that these correlated genes are enriched in genes related
to “transport” (Supplementary Table 5). A novel locus, rs6031598
of HNF4A, is correlated with the expression level of HNF4A. Of
note, a noncoding genetic variant, rs1967017 of PDZK1, which
encodes a scaffold protein for urate transporters61,62, has been
shown to be functionally linked to HNF4-dependent PDZK1
expression63.

For SNP rs9394948 of ZNF318, ABCC10 (MRP7), an ABC
transporter gene, was a positively correlated gene, and SLC22A7
(OAT2), an SLC transporter gene, was a negatively correlated
gene (Supplementary Data 5). SLC22A7 encodes organic anion
transporter 2 (OAT2), which mediates urate transport64 and is
expressed in kidney and liver. Furthermore, for SNP rs11952102

of MXD3, RAB24, and PRELID1 were positively correlated genes,
andMXD3 was a negatively correlated gene. RAB24 is localized to
the endoplasmic reticulum and is thought to participate in
autophagosome maturation65. RAB24 may influence SUA via
autophagy, because there is a report on relationship between SUA
and autophagy which is promoted by NLRP3 and results in
phagocytosis of urate crystals by human osteoblasts66. PRELID1
encodes PRELI, which forms a complex with TRIAP1 and
mediates intramitochondrial transport of phosphatidic acid67. It
is possible that PRELI may function as a urate transporter that
directly affects SUA or that it indirectly influences SUA via its
function as a phosphatidic acid transporter.

In trans-ethnic meta-analysis across our own meta-analysis
and the GUGC study, we have here identified 15 more novel loci
significantly associated with SUA. Out of these, rs2760181 of
KIAA0319 at 6p22.3 showed different direction of regression
coefficients between Japanese and European studies, but showed
genome-wide significant association (log10 Bayes’ factor >6).
Future studies will therefore be necessary to validate our findings
in independent cohorts.

The present genome-wide meta-analysis of SUA in Japan
identified eight novel loci. Furthermore, trans-ethnic meta-ana-
lysis of SUA in the present study revealed 15 more novel loci
associated with SUA. The present study also demonstrated that
SUA is regulated by multiple “transport”-related genes, that is,
not only urate transporter genes but also non-transporter genes
such as PDZK1 and HNF4A. Our findings thus provide important
insight into SUA regulation and the pathogenesis of hyperur-
icemia and gout, and they provide a potential basis for the
development of new treatments for these diseases.

Methods
Study subjects and genotyping. We performed a genome-wide meta-analysis
based on three Japanese cohorts including those of the J-MICC Study29,30, KING
Study31,32, and BBJ Project33,34. An overview of the characteristics of the study
populations is provided in Supplementary Table 1. Information regarding study-
specific genotyping, imputation, and analysis tools is provided in Supplementary
Table 2. Data and sample collection for the cohorts participating in the present
study were approved by the respective research ethics committees. All participants
provided written informed consent.

Details of cohorts. The Japan Multi-institutional Collaborative Cohort (J-MICC)
Study was launched in 2005. Through March 2014, 92,642 Japanese participants
aged 35 to 69 years had provided blood samples and lifestyle data based on a
questionnaire after having given their informed consent29,30. The present study
included 14,539 J-MICC Study participants randomly selected from the 12 targeted
areas (Chiba, Shizuoka-Sakuragaoka, Shizuoka, Daiko, Okazaki, Aichi, Takashima,
Kyoto, Tokushima, Fukuoka, Kagoshima, and Kyushu-KOPS (Kyushu Okinawa
Population Study)). After preimputation quality control, 14,091 participants
remained for the imputation process (Supplementary Table 2). SUA was measured
with the uricase-peroxidase method or the uricase–3,5-dimethoxy-4-fluoroanilide
(F-DAOS) method in 10,794 of the 14,091 participants. Individuals receiving
treatment for hyperuricemia or gout were excluded. Finally, 10,621 participants
remained for the association analysis (Supplementary Table 1). This study was
approved by the ethics committees of Nagoya University Graduate School of
Medicine (approval no. 939-14), Aichi Cancer Center, and all other participating
institutions. All research procedures were conducted according to the Ethical
Guidelines for Human Genome and Genetic Sequencing Research in Japan and the
Declaration of Helsinki.

The Kita-Nagoya Genomic Epidemiology (KING) Study (ClinicalTrials.gov
identifier NCT00262691) is an ongoing community-based prospective
observational study of the genetic basis of cardiovascular disease and its risk
factors31,32. It recruited 3975 Japanese subjects aged 50–80 years who underwent
community-based annual health checkups between May 2005 and December 2007.
A total of 2095 of the KING Study samples was included in the present study. SUA
was measured with the uricase method (Mizuho Medy, Saga, Japan). Individuals
under treatment for hyperuricemia or gout were excluded. The study was
performed according to the guidelines of the Declaration of Helsinki; the study
protocol was approved by the ethics committees of Aichi Gakuin University, Jichi
Medical University, Nagoya University, and Kyushu University; and all
participants provided written informed consent.

The BioBank Japan (BBJ) Project (http://biobankjp.org/english/index.html) was
initiated in 2003 at the Institute of Medical Science, The University of Tokyo, and it

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0339-0

6 COMMUNICATIONS BIOLOGY |           (2019) 2:115 | https://doi.org/10.1038/s42003-019-0339-0 | www.nature.com/commsbio

http://biobankjp.org/english/index.html
www.nature.com/commsbio


has constructed a large-scale, multi-institutional, hospital-based biobank. The BBJ
collected DNA, serum, and clinical information from ~200,000 Japanese patients
with any of 47 target diseases between fiscal years 2003 and 200733,34. Patients were
recruited from 66 hospitals of 12 medical institutes throughout Japan (Osaka
Medical Center for Cancer and Cardiovascular Diseases, Cancer Institute Hospital
of Japanese Foundation for Cancer Research, Juntendo University, Tokyo
Metropolitan Geriatric Hospital, Nippon Medical School, Nihon University School
of Medicine, Iwate Medical University, Tokushukai Hospitals, Shiga University of
Medical Science, Fukujuji Hospital, National Hospital Organization Osaka
National Hospital, and Iizuka Hospital). All patients were diagnosed with one or
more of the 47 target diseases by physicians at the cooperating hospitals. Clinical
information, including SUA measurements, was collected through interviews and
reviews of medical records with the use of a standard questionnaire. The present
study included 109,029 individuals aged between 18 and 85 years with valid SUA
measurements as described elsewhere28. Subjects receiving urate-lowering therapy
(allopurinol, febuxostat, probenecid, or benzbromarone) or with renal insufficiency
(estimated glomerular filtration rate of <15 ml min–1 1.73 m–2) were excluded. We
obtained written informed consent from all participants, and this study was
approved by the ethics committees of RIKEN Center for Integrative Medical
Sciences and the Institute of Medical Science, The University of Tokyo.

Association analysis for SNPs and SUA. Individuals taking urate-lowering drugs
were excluded from the present study. SUA was adjusted for age, sex, the top 10
principal components, and study-specific covariates in a linear regression model.
We then standardized the resulting residuals. The association of the z-score of the
residuals with SNP allele dose was tested by linear regression analysis. The effect
sizes and standard errors estimated in linear regression analysis were used in the
subsequent meta-analysis.

Quality control after genotype imputation. After genotype imputation, quality
control was applied to each study. SNPs with an imputation quality of r2 < 0.3 or a
minor allele frequency of <0.005 were excluded. SNPs that passed quality control in
both the J-MICC Study and BBJ cohorts were subjected to meta-analysis. To
identify studies with inflated GWAS significance, which can result from population
stratification, we computed the genomic control lambda68 and the intercept of LD
score regression69. We calculated the genomic control lambda in R. A study
showing a score of >1.1 for both measures was regarded as inflated. Inflation was
not detected in any study included in the present meta-analysis, and so genomic
control adjustment was not applied.

Meta-analysis. The meta-analysis was performed with a total of 121,745 Japanese
subjects from the three cohorts (Supplementary Table 1). The association results
for each SNP across the studies were combined with METAL software70 by the
fixed-effects inverse-variance-weighted method. Heterogeneity of effect sizes was
assessed with the I2 index. The meta-analysis included 5,864,938 SNPs and the
results from at least both the J-MICC Study and BBJ Project. The genome-wide
significance level α was set to a P value <5 × 10–8.

Replication study for novel loci with the GUGC-based study. To employ a
replication study and compare our meta-analysis with publicly available results
from Europeans conducted by the GUGC, we downloaded the summary statistics
from their website. The EAF of the HapMap project phase 2 CEU samples for each
SNP was added to the summary statistics of the GUGC because the results of the
GUGC study did not include EAFs. We excluded variants with MAF < 0.01. P-
values for the GUGC study were corrected for genomic control (lambda= 1.12 for
SUA and 1.03 for gout)24. Genomic inflation did not occur in the GUGC study
because the intercepts of the LD score regression, based on the raw P-values, were
1.01 for SUA and 1.09 for gout. We therefore calculated the raw P values from the
corrected P values, and used the raw P values as a replication study for novel loci in
our meta-analysis. For the replication of five novel loci, the significance level α was
determined by dividing 0.05 by the number of loci for Bonferroni correction (α=
0.05/5= 0.01).

Functional annotations. For prioritization of associated SNPs at the novel loci, we
adopted a series of bioinformatics approaches to collate functional annotation. We
first used ANNOVAR71 to obtain an aggregate set of functional annotations—
including gene location and impact of amino acid substitution based on the pre-
diction tools SIFT and PolyPhen-2—for the sentinel SNPs and SNPs in high-LD (r2

of ≥0.8 in JPT of 1000 Genomes phase 3) with the sentinel SNPs and with a P value
of <1 × 10–6 for SUA. We also examined these sentinel and high-LD SNPs for
identification of eQTLs in 14 tissues considered relevant to SUA regulation using
the GTEx v7 database. The significant criteria for eQTL were based on the GTEx
project:21 variants with a nominal P value below the gene-level threshold were
regarded as significant. The gene level threshold was determined by the permu-
tation test in the GTEx project21. UniProt term enrichment analysis for the sets of
positively correlated genes and negatively correlated genes was performed with
DAVID and with the threshold of a false discovery rate of <0.05 as calculated by
the Benjamini–Hochberg adjustment method.

SNP-based heritability in Japanese and European samples. We estimated the
SNP-based heritability of SUA for our Japanese meta-analysis and GUGC-based
study24 with the use of LD score regression69. As explained in our replication study
section, the EAF of the HapMap project phase 2 CEU samples for each SNP was
added to the summary statistics of the GUGC because the results of the GUGC
study did not include EAFs. The heritability estimates were calculated from the
summary statistics of 1,447,573 SNPs, which were assessed in both studies and have
MAF ≥ 1% in both studies and were not palindromic SNPs. The P values for the
GUGC study were corrected for genomic control (lambda= 1.12)24. Genomic
inflation did not occur in GUGC because the intercept of LD score regression based
on the raw P values was 1.01. Thus, we used raw P values calculated from corrected
P values. Furthermore, we calculated the genetic correlation between Japanese and
Europeans using the same data sets. The genetic correlation was calculated with the
use of Popcorn72.

Trans-ethnic meta-analysis with the use of GUGC-based study. For our trans-
ethnic meta-analysis across our meta-analysis and the GUGC-based study, we used
MANTRA v.1 software73, which has been developed for trans-ethnic meta-analysis
allowing heterogeneity in allelic effects. The trans-ethnic meta-analysis was cal-
culated from the summary statistics of 1,986,983 SNPs, which were assessed in both
studies and have MAF ≥ 1% in both. In our meta-analysis, the effect sizes were
calculated from a linear regression analysis in which the z-score of residual values
of SUA values after adjustment for covariates was used as a dependent variable. In
the GUGC project, the effect sizes were calculated from the linear regression
analysis in which the SUA value was used as a dependent variable. The scale of
effect size for these studies was therefore different. Thus, before the MANTRA
analysis, the effect sizes and standard errors of the GUGC study were divided by
the standard deviation of SUA in the GUGC study (=1.4 mg/dl) to approximate
the scale of effect sizes. A prior model of the relatedness between the studies was
estimated by employing a dmatcal script in the software using the allele frequency
of the analyzed SNPs. We regarded log10 Bayes’ factor >6 as a significant threshold
in line with the previous simulation study74.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The summary statistics of our genome-wide meta-analysis based on three Japanese
cohorts is available at the National Bioscience Database Center (Research ID: hum0167.
v1.meta.v1).
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