172 research outputs found

    Induction and Enhancement of Cardiac Cell Differentiation from Mouse and Human Induced Pluripotent Stem Cells with Cyclosporin-A

    Get PDF
    Induced pluripotent stem cells (iPSCs) are novel stem cells derived from adult mouse and human tissues by reprogramming. Elucidation of mechanisms and exploration of efficient methods for their differentiation to functional cardiomyocytes are essential for developing cardiac cell models and future regenerative therapies. We previously established a novel mouse embryonic stem cell (ESC) and iPSC differentiation system in which cardiovascular cells can be systematically induced from Flk1+ common progenitor cells, and identified highly cardiogenic progenitors as Flk1+/CXCR4+/VE-cadherin− (FCV) cells. We have also reported that cyclosporin-A (CSA) drastically increases FCV progenitor and cardiomyocyte induction from mouse ESCs. Here, we combined these technologies and extended them to mouse and human iPSCs. Co-culture of purified mouse iPSC-derived Flk1+ cells with OP9 stroma cells induced cardiomyocyte differentiation whilst addition of CSA to Flk1+ cells dramatically increased both cardiomyocyte and FCV progenitor cell differentiation. Spontaneously beating colonies were obtained from human iPSCs by co-culture with END-2 visceral endoderm-like cells. Appearance of beating colonies from human iPSCs was increased approximately 4.3 times by addition of CSA at mesoderm stage. CSA-expanded human iPSC-derived cardiomyocytes showed various cardiac marker expressions, synchronized calcium transients, cardiomyocyte-like action potentials, pharmacological reactions, and ultra-structural features as cardiomyocytes. These results provide a technological basis to obtain functional cardiomyocytes from iPSCs

    日本の本州中部山北地域の島弧―島弧衝突帯における深層掘削

    Get PDF
    We carried out borehole drilling in the Yamakita area near an active fault of the arc-arc collision zone in the western part of Kanagawa Prefecture. Slime and core samples were obtained. The borehole geology was established by examined them using petrographic analyses and geophysical logging data. We found that the southwestern slope of Mt. Maruyama was down-faulted from the northern slope of the mountain by an unknown fault. After drilling was completed, the borehole was established as a Hi-net seismic observation station. Data are collected by the Hi-net observation system and made available through the INTERNET

    VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling

    Get PDF
    Angiogenesis, the growth of new blood vessels, involves specification of endothelial cells to tip cells and stalk cells, which is controlled by Notch signalling, whereas vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 have been implicated in angiogenic sprouting. Surprisingly, we found that endothelial deletion of Vegfr3, but not VEGFR-3-blocking antibodies, postnatally led to excessive angiogenic sprouting and branching, and decreased the level of Notch signalling, indicating that VEGFR-3 possesses passive and active signalling modalities. Furthermore, macrophages expressing the VEGFR-3 and VEGFR-2 ligand VEGF-C localized to vessel branch points, and Vegfc heterozygous mice exhibited inefficient angiogenesis characterized by decreased vascular branching. FoxC2 is a known regulator of Notch ligand and target gene expression, and Foxc2(+/-);Vegfr3(+/-) compound heterozygosity recapitulated homozygous loss of Vegfr3. These results indicate that macrophage-derived VEGF-C activates VEGFR-3 in tip cells to reinforce Notch signalling, which contributes to the phenotypic conversion of endothelial cells at fusion points of vessel sprouts
    corecore