231 research outputs found

    VarySysDB: a human genetic polymorphism database based on all H-InvDB transcripts

    Get PDF
    Creation of a vast variety of proteins is accomplished by genetic variation and a variety of alternative splicing transcripts. Currently, however, the abundant available data on genetic variation and the transcriptome are stored independently and in a dispersed fashion. In order to provide a research resource regarding the effects of human genetic polymorphism on various transcripts, we developed VarySysDB, a genetic polymorphism database based on 187 156 extensively annotated matured mRNA transcripts from 36 073 loci provided by H-InvDB. VarySysDB offers information encompassing published human genetic polymorphisms for each of these transcripts separately. This allows comparisons of effects derived from a polymorphism on different transcripts. The published information we analyzed includes single nucleotide polymorphisms and deletion–insertion polymorphisms from dbSNP, copy number variations from Database of Genomic Variants, short tandem repeats and single amino acid repeats from H-InvDB and linkage disequilibrium regions from D-HaploDB. The information can be searched and retrieved by features, functions and effects of polymorphisms, as well as by keywords. VarySysDB combines two kinds of viewers, GBrowse and Sequence View, to facilitate understanding of the positional relationship among polymorphisms, genome, transcripts, loci and functional domains. We expect that VarySysDB will yield useful information on polymorphisms affecting gene expression and phenotypes. VarySysDB is available at http://h-invitational.jp/varygene/

    Comparative analysis of facial morphology between Okinawa Islanders and mainland Japanese using three-dimensional images.

    Get PDF
    OBJECTIVES: Differences in facial height and breadth between Okinawa Islanders and mainland Japanese have been reported in previous craniometric and somatometric studies. This study using three-dimensional (3D) images aimed to identify more detailed characteristics of facial morphology in each population. METHODS: Using a hand-held 3D scanner, we obtained 60 facial surface images each from Okinawa Islanders and mainland Japanese. Twenty-one landmarks were plotted on a computer and 27 measurements of distances and angles between the landmarks were taken. Statistical analyses such as t test, principal component analysis (PCA), regression analysis, and discriminant analysis were performed to identify sex and regional differences, the patterns of facial features, factors explaining the facial patterns, and other features. RESULTS: Okinawa Islanders showed lower facial and nasal heights than mainland Japanese. Furthermore, we identified larger protrusions of the glabella and nasal root in Okinawa Islanders than in mainland Japanese. In the PCA, we observed components of facial shape patterns. These components mainly represented facial size (PC1), facial depth (PC2), the prominence of the glabella and nasal root (PC3), and facial breadth (PC4). We identified that the population difference is strongly associated with PC3. CONCLUSIONS: This study quantitatively identified differences in the facial morphology between Okinawa Islanders and mainland Japanese using 3D digital images, with special emphases on the differences in the nasal height and the prominence of the glabella and nasal root

    Integrative annotation of 21,037 human genes validated by full-length cDNA clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    ParaHaplo: A program package for haplotype-based whole-genome association study using parallel computing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since more than a million single-nucleotide polymorphisms (SNPs) are analyzed in any given genome-wide association study (GWAS), performing multiple comparisons can be problematic. To cope with multiple-comparison problems in GWAS, haplotype-based algorithms were developed to correct for multiple comparisons at multiple SNP loci in linkage disequilibrium. A permutation test can also control problems inherent in multiple testing; however, both the calculation of exact probability and the execution of permutation tests are time-consuming. Faster methods for calculating exact probabilities and executing permutation tests are required.</p> <p>Methods</p> <p>We developed a set of computer programs for the parallel computation of accurate P-values in haplotype-based GWAS. Our program, ParaHaplo, is intended for workstation clusters using the Intel Message Passing Interface (MPI). We compared the performance of our algorithm to that of the regular permutation test on JPT and CHB of HapMap.</p> <p>Results</p> <p>ParaHaplo can detect smaller differences between 2 populations than SNP-based GWAS. We also found that parallel-computing techniques made ParaHaplo 100-fold faster than a non-parallel version of the program.</p> <p>Conclusion</p> <p>ParaHaplo is a useful tool in conducting haplotype-based GWAS. Since the data sizes of such projects continue to increase, the use of fast computations with parallel computing--such as that used in ParaHaplo--will become increasingly important. The executable binaries and program sources of ParaHaplo are available at the following address: <url>http://sourceforge.jp/projects/parallelgwas/?_sl=1</url></p

    Theoretical Formulation of Principal Components Analysis to Detect and Correct for Population Stratification

    Get PDF
    The Eigenstrat method, based on principal components analysis (PCA), is commonly used both to quantify population relationships in population genetics and to correct for population stratification in genome-wide association studies. However, it can be difficult to make appropriate inference about population relationships from the principal component (PC) scatter plot. Here, to better understand the working mechanism of the Eigenstrat method, we consider its theoretical or “population” formulation. The eigen-equation for samples from an arbitrary number () of populations is reduced to that of a matrix of dimension , the elements of which are determined by the variance-covariance matrix for the random vector of the allele frequencies. Solving the reduced eigen-equation is numerically trivial and yields eigenvectors that are the axes of variation required for differentiating the populations. Using the reduced eigen-equation, we investigate the within-population fluctuations around the axes of variation on the PC scatter plot for simulated datasets. Specifically, we show that there exists an asymptotically stable pattern of the PC plot for large sample size. Our results provide theoretical guidance for interpreting the pattern of PC plot in terms of population relationships. For applications in genetic association tests, we demonstrate that, as a method of correcting for population stratification, regressing out the theoretical PCs corresponding to the axes of variation is equivalent to simply removing the population mean of allele counts and works as well as or better than the Eigenstrat method

    Genome-wide SNP analysis reveals population structure and demographic history of the ryukyu islanders in the southern part of the Japanese archipelago.

    Get PDF
    The Ryukyu Islands are located to the southwest of the Japanese archipelago. Archaeological evidence has revealed the existence of prehistoric cultural differentiation between the northern Ryukyu islands of Amami and Okinawa, and the southern Ryukyu islands of Miyako and Yaeyama. To examine a genetic subdivision in the Ryukyu Islands, we conducted genome-wide single nucleotide polymorphism typing of inhabitants from the Okinawa Islands, the Miyako Islands, and the Yaeyama Islands. Principal component and cluster analyses revealed genetic differentiation among the island groups, especially between Okinawa and Miyako. No genetic affinity was observed between aboriginal Taiwanese and any of the Ryukyu populations. The genetic differentiation observed between the inhabitants of the Okinawa Islands and the Miyako Islands is likely to have arisen due to genetic drift rather than admixture with people from neighboring regions. Based on the observed genetic differences, the divergence time between the inhabitants of Okinawa and Miyako islands was dated to the Holocene. These findings suggest that the Pleistocene inhabitants, whose bones have been found on the southern Ryukyu Islands, did not make a major genetic contribution, if any, to the present-day inhabitants of the southern Ryukyu Islands

    A comparative study of craniofacial measurements between Ryukyuan and mainland Japanese females using lateral cephalometric images

    Get PDF
    Using lateral cephalometric images, we compared the skeletal and soft tissue configurations of Ryukyuan and mainland Japanese females. We collected lateral cephalometric images of 30 females each from Okinawa Island and mainland Japan. Sixty landmarks were plotted on each image. Then, based on the coordinates of the landmarks, 68 distances and 34 angles were calculated according to orthodontic and anthropometric methods. We confirmed that the Ryukyuans have a smaller height in the upper and midfacial region than the mainland Japanese. Moreover, our findings indicate that, compared with the mainland Japanese females, the Ryukyuan females clearly have the following features: (1) a shallower mandibular notch, (2) an anterior-inclined symphysis of mandible, and (3) a smaller depth from upper lip to incisors. We also found that an anterior-inclined mandibular corpus and incisors are associated with a smaller distance between the surfaces of the upper lip and teeth and with a more protruded lip shape
    corecore