14 research outputs found

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    Get PDF
    The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning.publishedVersio

    Towards the new Thematic Core Service Tsunami within the EPOS Research Infrastructure

    Get PDF
    Tsunamis constitute a significant hazard for European coastal populations, and the impact of tsunami events worldwide can extend well beyond the coastal regions directly affected. Understanding the complex mechanisms of tsunami generation, propagation, and inundation, as well as managing the tsunami risk, requires multidisciplinary research and infrastructures that cross national boundaries. Recent decades have seen both great advances in tsunami science and consolidation of the European tsunami research community. A recurring theme has been the need for a sustainable platform for coordinated tsunami community activities and a hub for tsunami services. Following about three years of preparation, in July 2021, the European tsunami community attained the status of Candidate Thematic Core Service (cTCS) within the European Plate Observing System (EPOS) Research Infrastructure. Within a transition period of three years, the Tsunami candidate TCS is anticipated to develop into a fully operational EPOS TCS. We here outline the path taken to reach this point, and the envisaged form of the future EPOS TCS Tsunami. Our cTCS is planned to be organised within four thematic pillars: (1) Support to Tsunami Service Providers, (2) Tsunami Data, (3) Numerical Models, and (4) Hazard and Risk Products. We outline how identified needs in tsunami science and tsunami risk mitigation will be addressed within this structure and how participation within EPOS will become an integration point for community development.publishedVersio

    A Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta, Mediterranean Sea

    Get PDF
    A hypothetical landslide tsunami at the Nile Delta in the Eastern Mediterranean Sea is modeled in order to study hazards it would pose to the region. The methodology used is based on numerical simulation of the generation and propagation of a realistic landslide scenario. The volume of the landslide source is 41 km3, located offshore northern Egypt. The maximum simulated wave heights along the northern, southern, and eastern coasts in the region are in the range of 1–12, 1–6.5, and 0.5–3 m, respectively. The maximum tsunami current velocity along the coasts reaches ~ 2–5 m s–1. Simulations show that bathymetric features in the region and the coastal morphology focus the maximum tsunami waves into some specific paths along which the largest tsunami runup heights occur. The semi-enclosed nature of the eastern Mediterranean causes wave reflections, which result in several wave trains arriving at every coastal site. In some coastal sites, the largest simulated wave belongs to the second wave train, indicating that wave reflection is responsible for this delayed large wave. Based on the results, deployment of a network of deepwater pressure gauges may help in detection and early warning of possible landslide-generated tsunamis in the Eastern Mediterranean

    The September 28th, 2018, Tsunami In Palu-Sulawesi, Indonesia: A Post-Event Field Survey

    No full text
    On September 28th, 2018, a powerful earthquake (Mw 7.5) struck the Island of Sulawesi in Indonesia. The earthquake was followed by a destructive and deadly tsunami that hit the Bay of Palu. A UNESCO international tsunami survey team responded to the disaster and surveyed 125 km of coastline along the Palu Bay up to the earthquake epicentre region. The team performed 78 tsunami runup and inundation height measurements throughout the surveyed coastline. Measured values reached 9.1 m for the runup height and 8.7 m for the inundation height, both at Benteng village. The survey team also identified ten large coastal sectors that collapsed into the sea of Palu Bay after the earthquake. The distribution of the measured tsunami data within Palu Bay exhibits a clear localised impact suggesting the contribution of secondary non-seismic local sources to the generation of the tsunami. Findings of the field reconnaissance are discussed to provide an insight into the remaining debated source of the Palu tsunami.JRC.E.1-Disaster Risk Managemen

    Earthquake-induced liquefaction around marine structures

    No full text
    Summarization: This paper gives a state-of-the-art review of seismic-induced liquefaction with special reference to marine structures. The paper is organized in seven sections: (1) introduction; (2) seismic-induced liquefaction in which a general account of soil liquefaction is presented; (3) existing codes/guidelines regarding seismic-induced liquefaction and its implications for marine structures; (4) review of the Japanese experience, giving a brief history of earthquakes and design codes, describing the current design code/standard for port and harbor facilities including counter measures and remediation; (5) review of the liquefaction damage inflicted on marine structures in the 1999 Turkey Kocaeli Earthquake, including recommendations which draw on the lessons learned; (6) assessment of postliquefaction ground deformation (more specifically of lateral ground spreading); and (7) tsunamis and their impact. The present paper and the existing guidelines (CEN, ASCE, and PIANC) form a complementary source of information on earthquake-induced liquefaction with special reference to its impact on marine structures.Presented on: Journal of Waterway, Port, Coastal, and Ocean Engineerin

    Inter-model analysis of tsunami-induced coastal currents

    No full text
    To help produce accurate and consistent maritime hazard products, the National Tsunami Hazard Mitigation Program organized a benchmarking workshop to evaluate the numerical modeling of tsunami currents. Thirteen teams of international researchers, using a set of tsunami models currently utilized for hazard mitigation studies, presented results for a series of benchmarking problems; these results are summarized in this paper. Comparisons focus on physical situations where the currents are shear and separation driven, and are thus de-coupled from the incident tsunami waveform. In general, we find that models of increasing physical complexity provide better accuracy, and that low-order three-dimensional models are superior to high-order two-dimensional models. Inside separation zones and in areas strongly affected by eddies, the magnitude of both model-data errors and inter-model differences can be the same as the magnitude of the mean flow. Thus, we make arguments for the need of an ensemble modeling approach for areas affected by large-scale turbulent eddies, where deterministic simulation may be misleading. As a result of the analyses presented herein, we expect that tsunami modelers now have a better awareness of their ability to accurately capture the physics of tsunami currents, and therefore a better understanding of how to use these simulation tools for hazard assessment and mitigation efforts

    The Making of the NEAM Tsunami Hazard Model 2018 (NEAMTHM18)

    No full text
    The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning
    corecore