31 research outputs found
Anisotropy of effective masses in CuInSe2
Anisotropy of the valence band is experimentally demonstrated in CuInSe2, a key component of the absorber layer in one of the leading thin-film solar cell technology. By changing the orientation of applied magnetic fields with respect to the crystal lattice, we measure considerable differences in the diamagnetic shifts and effective g-factors for the A and B free excitons. The resulting free exciton reduced masses are combined with a perturbation model for non-degenerate independent excitons and theoretical dielectric constants to provide the anisotropic effective hole masses, revealing anisotropies of 5.5 (4.2) for the A (B) valence bands
A magneto‐reflectivity study of CuGaSe2 single crystals
CuGaSe2 single crystals are studied using magneto-reflectivity at 4.2 K in magnetic fields B up to 20 T. The A and B free excitons, observed in the optical reflectivity spectra, blue shift with increasing B. A low-field perturbation approach within the anisotropic hydrogenic model is used to fit the dependence of the spectral position of these excitons on B. The A and B exciton reduced masses of 0.115m0 and 0.108m0 (m0 is the free electron mass), Rydbergs of 12.9 and 12.2meV, Bohr radii 5.08 and 5.4 nm, and effective hole masses of 0.64m0 and 0.48m0, respectively, are determined
RBS-channeling study of radiation damage in Ar+ implanted CuInSe2 crystals
Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar + -bombarded CuInSe 2 single crystal using Rutherford backscattering/channeling analysis. Ar + ions of 30 keV were implanted with doses in the range from 10 12 to 3 × 10 16 cm -2 at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stacking faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects
A luminescence study of Cu2ZnSnSe4/Mo/glass films and solar cells with near stoichiometric copper content
Cu2ZnSnSe4 (CZTSe) is one of the leading candidates for the absorber layer in sustainable solar cells. Thin films of CZTSe with a near stoichiometric [Cu]/[Zn + Sn] were used to produce solar cells with conversion efficiency η = 6.4% by a standard solar cell processing including KCN etching and the deposition of CdS and ZnO. Both CZTSe films and solar cells were examined using photoluminescence (PL) to analyse the nature of radiative recombination and photoluminescence excitation (PLE) at 4.2 K to determine the bandgap (E g ). Low temperature PL spectra of the films reveal an intense band P1 at 0.81 eV and a low intensity band P2 at 0.93 eV. Their temperature and excitation intensity dependencies suggest that they both involve recombinations of free electrons with holes localised at acceptors with the energy level influenced by potential fluctuations in the valence band. We associate P1 and P2 with different fractions of CZTSe: with a lower and higher degree of order of Cu and Zn on the cation sub-lattice, respectively. Device processing reduced the intensity of P1 by 2.5 whereas the intensity of P2 increased by a 1.5. We assign this to a low temperature annealing due to CdS and ZnO deposition which increased the fraction of CZTSe with high degree of Cu/Zn order and decreased the fraction with low degree of Cu/Zn order. Device processing increased E g , blue shifted P1, decreased its width, j-shift and the mean depth of potential fluctuations. These can also be related to the annealing and/or KCN etching and the chemical effect of Cd, due to CdS replacing copper at the CdS-CZTSe interface layer. Processing induced a new broad band P3 at 1.3 eV (quenching with E a = 200 meV) which we attributed to defects in the CdS layer
Effects of selenisation temperature on photoluminescence and photoluminescence excitation spectra of ZnO/CdS/Cu2ZnSnSe4/Mo/glass
The effect of solar cell processing (including etching in KCN along with deposition of CdS and ZnO) on photoluminescence (PL) spectra and bandgap Eg (measured at 4.2 K by photoluminescence excitation) of Cu2ZnSnSe4 films, produced by selenising metallic precursors at 450 °C, 500 °C and 550 °C, was studied. Temperature and excitation intensity analysis of the P1 dominant band in the PL spectra of solar cells suggests that after processing this band still can be assigned to the free-to-bound recombination of free electrons with holes bound at deep acceptor levels influenced by valence band-tails. However processing increased the intensity of P1 and blue shifted it. The strongest effect was observed for the film selenised at 500 °C. For the film selenised at 450 °C the blue shift and increase in the intensity were smaller and only a slight intensity rise was found for the film selenised at 550 °C. The intensity increase we assign to a reduction in the concentration of non-radiative recombination centers on the surface because of the etching and changes in doping due to inter-diffusion of Cd, S, Se and Zn after the deposition of CdS. Such an inter-diffusion depends on the elemental composition of the films defining the chemistry of defects and influencing Eg which increased in the film selenised at 500 °C but decreased in the other films. Processing increased the P1 shift rate (j-shift) with excitation power change in all the films demonstrating a higher compensation degree in the solar cells which is consistent with the formation of an interface layer containing new donors CdCu
Spectroscopic and electrical signatures of acceptor states in solution processed Cu2ZnSn(S,Se)4 solar cells
The nature and dynamics of acceptor states in solution-processed Cu2ZnSn(S,Se)4 (CZTSSe) thin films are investigated by variable temperature photoluminescence (PL) and electrical impedance spectroscopy. Highly pure I-4 phase CZTSSe with the composition Cu1.6ZnSn0.9(S0.23Se0.77)4 is synthesized by sequentially spin coating of dimethyl-formamide/isopropanol solutions containing metal salts and thiourea onto Mo coated glass, followed by annealing in an Se atmosphere at 540 C. As annealed films are highly compact with a thickness of 1.3 micron and grain sizes above 800 nm, with a band gap of 1.18 eV. Photovoltaic devices of 0.25 cm2 with the architecture glass/Mo/CZTSSe/CdS/i-ZnO/Al:ZnO demonstrate a power conversion efficiency reaching up to 5.7% in the absence of an antireflective coating. Under AM 1.5G illumination at 296 K, the best device shows a 396 mV open-circuit voltage (VOC), 27.8 mA cm-2 short-circuit current (JSC) and 52% fill factor (FF). The overall dispersion of these parameters is under 15% for a total of 20 devices. In the near IR region, PL spectra are dominated by two broad and asymmetrical bands at 1.14 eV (PL1) and 0.95 eV (PL2) with characteristic power and temperature dependences. Analysis of the device electrical impedance spectra also reveals two electron acceptor states with the same activation energy as those observed by PL. This allows assigning PL1 as a radiative recombination at localized copper vacancies (VCu), while PL2 is associated with CuZn antisites, broadened by potential fluctuations (band tails). The impact of these states on device performance as well as other parameters, such as barrier collection heights introduced by partial selenization of the back contact, are discussed
Research of the NUSTAR departments : SHE departments and HIM SHE section
The SHE departments devoted to the research of superheavy elements, operate the recoil separators SHIP and TASCA and their ancillary installations including SHIPTRAP and a laser spectroscopy setup at SHIP as well as chemistry and nuclear spectroscopy setups at TASCA. In 2019, the activities at GSI focused on the UNILAC beamtime within the FAIR Phase-0 program and on the analysis of data obtained in prior beamtimes. At HIM, the advancement of actinide sample preparation, manipulation, and characterization for various applications was most central. In addition, technical developments, for example for single-ion mass measurements, have been performed
Observation of a first candidate in the OPERA experiment in the CNGS beam
The OPERA neutrino detector in the underground Gran Sasso Laboratory (LNGS)
has been designed to perform the first detection of neutrino oscillations in
direct appearance mode through the study of the
channel. The hybrid apparatus consists of an emulsion/lead target complemented
by electronic detectors and it is placed in the high energy long-baseline CERN
to LNGS beam (CNGS) 730 km away from the neutrino source. Runs with CNGS
neutrinos were successfully carried out in 2008 and 2009. After a brief
description of the beam, the experimental setup and the procedures used for the
analysis of the neutrino events, we describe the topology and kinematics of a
first candidate charged-current event satisfying the kinematical
selection criteria. The background calculations and their cross-check are
explained in detail and the significance of the event is assessed.Comment: 19 pages, 3 figure
A magneto‐reflectivity study of CuInTe2 single crystals
CuInTe 2 single crystals are studied using optical magneto-reflectance (MR) in magnetic fields B up to 20 T at 4.2 K. The spectra exhibit the A and B free excitons' blue shifting at increasing magnetic fields. Fitting quadratic functions to the experimental dependencies of the exciton spectral energy on B assuming a low field limit allow the determination of diamagnetic shift rates of 8.2 × 10 −5 and 8.5 × 10 −5 eV T −2 for the A and B free excitons, respectively. The excitons' reduced masses of 0.0575m 0 and 0.0568m 0 (m 0 is the free electron mass), Rydbergs of 6.2 and 6.1 meV, and Bohr radii of 10.4 and 10.5 nm are then estimated. An electron effective mass of 0.062m 0 and B sub-band effective hole mass of 0.70m 0 are determined using a literature value of the A valence sub-band hole of 0.78m 0