72 research outputs found

    Gene Expression Profiles of the Small Intestinal Mucosa of Dogs Repeatedly Infected with the Cestode \u3ci\u3eEchinococcus multilocularis\u3c/i\u3e

    Get PDF
    The data set presented in this article is related to a previous research article entitled, The timing of worm exclusion in dogs repeatedly infected with the cestode Echinococcus multilocularis (Kouguchi et al., 2016). This article describes the genes \u3e2 fold up- or down-regulated in the first- and repeated-infection groups compared to the healthy controls group. The gene expression profiles were generated using the Agilent-021193 Canine (V2) Gene Expression Microarray (GPL15379). The raw and normalized microarray data have been deposited with the Gene Expression Omnibus (GEO) database under accession number GSE105098

    Adult Worm Exclusion and Histological Data of Dogs Repeatedly Infected with the Cestode \u3ci\u3eEchinococcus multilocularis\u3c/i\u3e

    Get PDF
    The data presented in this article are related to a previously published research article titled The timing of worm exclusion in dogs repeatedly infected with the cestode Echinococcus multilocularis (Kouguchi et al. 2016). This data describe a comparison of worm exclusion in the early stage of infection (1 day and 6 days post-infection) between dogs infected for the first time (control group) and dogs repeatedly infected with the parasite 4 times (repeated infection groups). We observed that 6 days post reinfection, the number of adult worms in repeated-infection groups decreased by 88.7% compared with the control group. Histological analysis comparison of the small intestinal mucosa from healthy, first infected, and repeatedly infected dogs are also reported. We observed no clear pathological abnormality, except the shortening of microvillus in reinfected dogs. However, eosinophil accumulation and eosinophilic ulcers were observed in some reinfected dogs. This data could be useful as preliminary data to develop a final host vaccine for this parasite

    Effect of the anti-parasitic compounds pyrvinium pamoate and artemisinin in enzymatic and culture assays: Data on the search for new anti-echinococcal drugs

    Get PDF
    The dataset presented herein is related to a previous research article titled “Mitochondrial Complex III in Larval Stage of Echinococcus multilocularis as a Potential Chemotherapeutic Target and in vivo Efficacy of Atovaquone Against Primary Hydatid Cysts” [1]. In this report, data were collected by screening drugs for echinococcosis. We investigated the inhibitory activities of artemisinin and pyrvinium pamoate against the mitochondrial respiratory enzymes in E. multilocularis protoscoleces. Artemisinin did not inhibit mitochondrial complexes I, II, and III. However, pyrvinium pamoate inhibited complex I at 11 μM,although complexes II and III were not inhibited. In the culture assay, E. multilocularis protoscoleces were treated with atovaquone (ATV), rotenone, praziquantel, artemisinin, and pyrvinium pamoate at a final concentration of 50 µM in different culture media. The viability of protoscoleces was compared under aerobic and anaerobic conditions via culture experiments. The survival days of E. multilocularis protoscoleces were evaluated in the drug-treated group compared with those in the non-treated group. The results of these culture assays revealed that praziquantel and artemisinin did not eliminate the protoscoleces under both aerobic and anaerobic conditions. However, a stronger elimination ability was observed with the co-administration of praziquantel or artemisinin with ATV than with ATV alone under aerobic conditions. Pyrvinium pamoate completely killed protoscoleces at 5 and 7 days under aerobic and anaerobic conditions, respectively. Pyrvinium pamoate behaved identically to rotenone, the complex I inhibitor, in the culture treatment assay.The data serve as a reference for the development of novel anti-echinococcal drugs

    Medical Treatment of Echinococcus multilocularis and New Horizons for Drug Discovery: Characterization of Mitochondrial Complex II as a Potential Drug Target

    Get PDF
    As an efficient drug for alveolar echinococcosis (AE) is still not available, new chemotherapy targets are necessary. The mitochondrial respiratory chain may be a good drug candidate because parasite respiratory chains are quite different from those of mammalian hosts. For example, Ascaris suum possesses an NADH‐fumarate reductase system (fumarate respiration) that is highly adapted to anaerobic environments such as the small intestine. It is composed of mitochondrial complex I (NADH‐ubiquinone reductase), complex II (succinate‐ubiquinone reductase), and rhodoquinone. We previously demonstrated that fumarate respiration is also essential in E. multilocularis. Quinazoline, a complex I inhibitor, inhibited growth of E. multilocularis larvae in vitro. These results indicate that fumarate respiration could be a target for E. multilocularis therapy. In the current chapter, we focused on complex II, which is another component of this system, because quinazoline exhibited strong toxicity to mammalian mitochondria. We evaluated the molecular and biochemical characterization of E. multilocularis complex II as a potential drug target. In addition, we found that ascofuranone, a trypanosome cyanide‐insensitive alternative oxidase inhibitor, inhibited E. multilocularis complex II at the nanomolar order. Our findings demonstrate the potential development of targeted therapy against Echinococcus complex II

    First Report of Trichinella nativa in Red Foxes(Vulpes vulpes schrencki) from Otaru City,Hokkaido,Japan

    Get PDF
    北海道小樽市で捕獲された43頭のキタキツネと9頭のタヌキについて、筋肉中のトリヒナ線虫の寄生状況を調べた。そのうち5頭のキツネからトリヒナ線虫の一種Trichinella nativaの幼虫が検出された。この発見は、北海道でキタキツネが、トリヒナ線虫の野外型の生活環維持の重要な宿主であることを示唆している。北海道におけるキタキツネからT.nativaの寄生報告は、最初のものである

    Killing Two Birds with One Stone: Discovery of Dual Inhibitors of Oxygen and Fumarate Respiration in Zoonotic Parasite, Echinococcus multilocularis

    Get PDF
    Ascofuranone (AF), a meroterpenoid isolated from various filamentous fungi, including Acremonium egyptiacum, has been reported as a potential lead candidate for drug development against parasites and cancer. In this study, we demonstrated that AF and its derivatives are potent anthelminthic agents, particularly against Echinococcus multilocularis, which is the causative agent of alveolar echinococcosis. We measured the inhibitory activities of AF and its derivatives on the mitochondrial aerobic and anaerobic respiratory systems of E. multilocularis larvae. Several derivatives inhibited complex II (succinate:quinone reductase [SQR]; IC50 = 0.037 to 0.135 mM) and also complex I to III (NADH:cytochrome c reductase; IC50 = 0.008 to 0.401 mM), but not complex I (NADH:quinone reductase), indicating that mitochondrial complexes II and III are the targets. In particular, complex II inhibition in the anaerobic pathway was notable because E. multilocularis employs NADH:fumarate reductase (fumarate respiration), in addition to NADH oxidase (oxygen respiration), resulting in complete shutdown of ATP synthesis by oxidative phosphorylation. A structure-activity relationship study of E. multilocularis complex II revealed that the functional groups of AF are essential for inhibition. Binding mode prediction of AF derivatives to complex II indicated potential hydrophobic and hydrogen bond interactions between AF derivatives and amino acid residues within the quinone binding site. Ex vivo culture assays revealed that AF derivatives progressively reduced the viability of protoscoleces under both aerobic and anaerobic conditions. These findings confirm that AF and its derivatives are the first dual inhibitors of fumarate and oxygen respiration in E. multilocularis and are potential lead compounds in the development of anti-echinococcal drugs

    A Pilot Study on Developing Mucosal Vaccine against Alveolar Echinococcosis (AE) Using Recombinant Tetraspanin 3: Vaccine Efficacy and Immunology

    Get PDF
    Humans and rodents become infected with E. multilocularis by oral ingesting of the eggs, which then develop into cysts in the liver and progress an endless proliferation. Untreated AE has a fatality rate of >90% in humans. Tetraspanins have been identified in Schistosoma and showed potential as the prospective vaccine candidates. In our recent study, we first identified seven tetraspanins in E. multilocularis and evaluated their protective efficacies as vaccines against AE when subcutaneously administered to BALB/c mice. Mucosal immunization of protective proteins is able to induce strong local and systemic immune responses, which might play a crucial role in protecting humans against E. multilocularis infection via the intestine, blood and liver. We focused on Em-TSP3, which achieved significant vaccine efficacy via both s.c. and i.n. routes. The adjuvanticity of nontoxic CpG OND as i.n. vaccine adjuvant was evaluated. The widespread expression of Em-TSP3 in all the developmental stages of E. multilocularis, and the strong local and systemic immune responses evoked by i.n. administration of rEm-TSP3 with CpG OND adjuvant suggest that this study might open the way for developing efficient, nontoxic human mucosal vaccines against AE

    HELMINTH PARASITES OF APODEMUS SPECIOSUS AND A. ARGENTEUS FROM THE KOSHIKI ISLANDS, JAPAN, WITH A DESCRIPTION OF SUBULURA SUZUKII SP. N

    Get PDF
    Helminths of Apodemus speciosus and A. argenteus from Shimo-koshiki Island of the Koshiki Islands group, Kagoshima Prefecture, Japan were studied. Eight helminth species were collected : Protospirura muris, Rictularia cristata, Tenorastrongylus speciosus, Capillaria sp., Syphacia emileromani, Syphacia sp., Subulura (Murisubulura) suzukii sp. n. and Cladothyridium sp.. The genus Subulura was the first recorded in mammals of Japan. Subulura suzukii was differentiable from S. ortleppi and S. williaminglisi by the structure of the labial lobe, lateral alae and the spicules

    Helminth Parasites of Bolivian Cebid Monkeys

    Get PDF
    Reports by Grant-in-Aid for Overseas Scientific Survey1987 Grant-in-Aid for Scientific Research (Grant-in-Aid for Overseas Scientific Survey) Reports of Research Project (Number of Project 1986: 61041045, 1987: 62043042)Phylogenetic Studies of South American MonkeysHead Investigator 1986, 1987: Kyoto University, Primate Research Institutc, Associate Professor, Yasuo NOGAM
    corecore