110 research outputs found

    Spatiotemporal dynamics of neural reinstatement during paired associates memory

    Get PDF
    Reinstatement of neural activity is hypothesized to underlie our ability to mentally travel back in time in order to recover the context of a previous experience. We used intracranial recordings to directly examine the precise spatiotemporal extent of neural reinstatement as 32 participants with electrodes placed for seizure monitoring performed a paired associates episodic verbal memory task. By cueing recall, we were able to compare reinstatement during correct and incorrect trials, and found that successful retrieval occurs with reinstatement of a gradually changing neural signal present during encoding. We examined reinstatement in individual frequency bands and individual electrodes and found that neural reinstatement was largely mediated by temporal lobe theta and high gamma frequencies. Leveraging the high temporal precision afforded by intracranial recordings, our data demonstrate that high gamma activity associated with reinstatement preceded theta activity during encoding, but during retrieval this difference in timing between frequency bands was absent. Using a time-warping algorithm, we quantify the time scale of this replay and show that on average, retrieval exhibits replay of the spectral dynamics of encoding on a faster timescale. This supports theories that memory retrieval consists of a temporally compressed replay of encoding. Our results complement previous studies showing that distributed patterns of neural activity are coordinated to encode a representation of temporal context which is then recovered during successful memory retrieval with precise spatiotemporal dynamics

    Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome

    Get PDF
    SummaryChromosomes are the physical realization of genetic information and thus form the basis for its readout and propagation. Here we present a high-resolution chromosomal contact map derived from a modified genome-wide chromosome conformation capture approach applied to Drosophila embryonic nuclei. The data show that the entire genome is linearly partitioned into well-demarcated physical domains that overlap extensively with active and repressive epigenetic marks. Chromosomal contacts are hierarchically organized between domains. Global modeling of contact density and clustering of domains show that inactive domains are condensed and confined to their chromosomal territories, whereas active domains reach out of the territory to form remote intra- and interchromosomal contacts. Moreover, we systematically identify specific long-range intrachromosomal contacts between Polycomb-repressed domains. Together, these observations allow for quantitative prediction of the Drosophila chromosomal contact map, laying the foundation for detailed studies of chromosome structure and function in a genetically tractable system

    RNA-Peptide nanoplexes drug DNA damage pathways in high-grade serous ovarian tumors

    Get PDF
    DNA damaging chemotherapy is a cornerstone of current front‐line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo‐resistant disease; therefore, adjuvant treatments that synergize with DNA‐damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide‐nucleic acid complex that facilitates tumor‐specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex‐mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high‐grade serous OC to cytotoxic chemotherapy by blocking p38/MK2‐dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.National Institutes of Health (U.S.) (Grant R01-ES015339)National Institute of Biomedical Imaging and Bioengineering (U.S.) (Grant 1F32EB017614)National Science Foundation (U.S.) (Grant GFRP 1122374)National Cancer Institute (U.S.) (Grant P30-CA14051)National Science Foundation (U.S.) (Grant DMR-0819762

    Molecular network analysis of phosphotyrosine and lipid metabolism in hepatic PTP1b deletion mice

    Get PDF
    Metabolic syndrome describes a set of obesity-related disorders that increase diabetes, cardiovascular, and mortality risk. Studies of liver-specific protein-tyrosine phosphatase 1b (PTP1b) deletion mice (L-PTP1b[superscript −/−]) suggest that hepatic PTP1b inhibition would mitigate metabolic-syndrome through amelioration of hepatic insulin resistance, endoplasmic-reticulum stress, and whole-body lipid metabolism. However, the altered molecular-network states underlying these phenotypes are poorly understood. We used mass spectrometry to quantify protein-phosphotyrosine network changes in L-PTP1b[superscript −/−] mouse livers relative to control mice on normal and high-fat diets. We applied a phosphosite-set-enrichment analysis to identify known and novel pathways exhibiting PTP1b- and diet-dependent phosphotyrosine regulation. Detection of a PTP1b-dependent, but functionally uncharacterized, set of phosphosites on lipid-metabolic proteins motivated global lipidomic analyses that revealed altered polyunsaturated-fatty-acid (PUFA) and triglyceride metabolism in L-PTP1b[superscript −/−] mice. To connect phosphosites and lipid measurements in a unified model, we developed a multivariate-regression framework, which accounts for measurement noise and systematically missing proteomics data. This analysis resulted in quantitative models that predict roles for phosphoproteins involved in oxidation–reduction in altered PUFA and triglyceride metabolism.Pfizer Inc. (grant)National Institutes of Health (U.S.) (grant 5R24DK090963)National Institutes of Health (U.S.) (grant U54-CA112967)National Institutes of Health (U.S.) (grant CA49152 R37)National Institutes of Health (U.S.) (grant R01-DK080756)National Mouse Metabolic Phenotyping Center at UMASS (Grant (U24-DK093000))National Science Foundation (U.S.) (Graduate Research Fellowship

    Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Statins are a class of medications that reduce cholesterol by inhibiting 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Whether statins can benefit patients with dementia remains unclear because of conflicting results. We hypothesized that some of the confusion in the literature might arise from differences in efficacy of different statins. We used a large database to compare the action of several different statins to investigate whether some statins might be differentially associated with a reduction in the incidence of dementia and Parkinson's disease.</p> <p>Methods</p> <p>We analyzed data from the decision support system of the US Veterans Affairs database, which contains diagnostic, medication and demographic information on 4.5 million subjects. The association of lovastatin, simvastatin and atorvastatin with dementia was examined with Cox proportional hazard models for subjects taking statins compared with subjects taking cardiovascular medications other than statins, after adjusting for covariates associated with dementia or Parkinson's disease.</p> <p>Results</p> <p>We observed that simvastatin is associated with a significant reduction in the incidence of dementia in subjects ≄65 years, using any of three models. The first model incorporated adjustment for age, the second model included adjusted for three known risk factors for dementia, hypertension, cardiovascular disease or diabetes, and the third model incorporated adjustment for the Charlson index, which is an index that provides a broad assessment of chronic disease. Data were obtained for over 700000 subjects taking simvastatin and over 50000 subjects taking atorvastatin who were aged >64 years. Using model 3, the hazard ratio for incident dementia for simvastatin and atorvastatin are 0.46 (CI 0.44–0.48, <it>p </it>< 0.0001) and 0.91 (CI 0.80–1.02, <it>p </it>= 0.11), respectively. Lovastatin was not associated with a reduction in the incidence of dementia. Simvastatin also exhibited a reduced hazard ratio for newly acquired Parkinson's disease (HR 0.51, CI 0.4–0.55, <it>p </it>< 0.0001).</p> <p>Conclusion</p> <p>Simvastatin is associated with a strong reduction in the incidence of dementia and Parkinson's disease, whereas atorvastatin is associated with a modest reduction in incident dementia and Parkinson's disease, which shows only a trend towards significance.</p

    RNA‐Peptide nanoplexes drug DNA damage pathways in high‐grade serous ovarian tumors

    Get PDF
    Abstract DNA damaging chemotherapy is a cornerstone of current front‐line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo‐resistant disease; therefore, adjuvant treatments that synergize with DNA‐damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide‐nucleic acid complex that facilitates tumor‐specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex‐mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high‐grade serous OC to cytotoxic chemotherapy by blocking p38/MK2‐dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC

    Replication Fork Polarity Gradients Revealed by Megabase-Sized U-Shaped Replication Timing Domains in Human Cell Lines

    Get PDF
    In higher eukaryotes, replication program specification in different cell types remains to be fully understood. We show for seven human cell lines that about half of the genome is divided in domains that display a characteristic U-shaped replication timing profile with early initiation zones at borders and late replication at centers. Significant overlap is observed between U-domains of different cell lines and also with germline replication domains exhibiting a N-shaped nucleotide compositional skew. From the demonstration that the average fork polarity is directly reflected by both the compositional skew and the derivative of the replication timing profile, we argue that the fact that this derivative displays a N-shape in U-domains sustains the existence of large-scale gradients of replication fork polarity in somatic and germline cells. Analysis of chromatin interaction (Hi-C) and chromatin marker data reveals that U-domains correspond to high-order chromatin structural units. We discuss possible models for replication origin activation within U/N-domains. The compartmentalization of the genome into replication U/N-domains provides new insights on the organization of the replication program in the human genome
    • 

    corecore