32 research outputs found

    Anaplasma phagocytophilum in horses and ticks in Tunisia.

    Get PDF
    International audienceBACKGROUND: Anaplasma phagocytophilum , the causative agent of granulocytic anaplasmosis, affects several species of wild and domesticated mammals, including horses. We used direct and indirect methods to compare and evaluate exposure to A. phagocytophilum in horses in northern Tunisia. METHODS: Serum from 60 horses was tested by IFA for antibodies to A. phagocytophilum , and whole blood was tested for A. phagocytophilum 16S rRNA gene using a nested-PCR. To examine the risk of A. phagocytophilum transmission, 154 ticks that had been collected from horses were examined for the presence of A. phagocytophilum by nested-PCR targeting 16S rRNA gene. RESULTS: This is the first time that A. phagocytophilum has been detected in horses in Tunisia, with an overall seroprevalence of 40/60 (67%). Six of the seroreactive samples (10%) had an IFA titer of 1:80, 14 (23%) of 1:160, 8 (13%) of 1:320 and 12 (20%) a titer 1 ≥ 640. The seroprevalence revealed no significant regional and sex differences. In contrast, a significant difference was observed between breeds. Eight (13%) of the horses were positive for A. phagocytophilum in the PCR, with no significant breed and age differences. Hyalomma marginatum was a predominant tick species (130/154), and 3 were infected by A. phagocytophilum (a prevalence of 2.3%). The concordance rate of A. phagocytophilum detection between IFA and PCR had a k value of -0.07. CONCLUSIONS: The results presented in this study suggest that horses infested by ticks in Tunisia are exposed to A. phagocytophilum

    Reduction of Antibody Response to an 11-Valent Pneumococcal Vaccine Coadministered with a Vaccine Containing Acellular Pertussis Components

    No full text
    In pneumococcal conjugate vaccines (PCVs), polysaccharide antigens are often conjugated to protein carriers related to other common vaccines. It is therefore important to test PCV interaction with other pediatric vaccines when administered simultaneously. We assessed the immune response to an 11-valent PCV conjugated to diphtheria and tetanus carriers (PncD/T11), administered concomitantly, but in separate sites, with a combined vaccine containing epitopes related antigenically to the carriers: polyribosylribitol phosphate-tetanus tox oid (PRP-T), diphtheria toxoid (DT), and tetanus toxoid (TT). In addition, these combinations contained inactivated poliovirus vaccine (IPV) and either whole-cell pertussis (wP) or acellular pertussis (aP) components. After coadministration of PncD/T11 with the combined vaccine containing wP (DTwP/IPV/PRP-T), the responses to all polysaccharides in the PncD/T11 were satisfactory. In contrast, when coadministered with an aP-containing combination (DTaP/IPV/PRP-T), the response to all seven pneumococcal conjugates to TT was significantly reduced after primary and booster immunization. The pneumococcal conjugates to DT were not significantly reduced after the primary series, but were somewhat reduced after booster. It is likely that some suppression of the tetanus-mediated response occurred even when the PncD/T11 was coadministered with wP, but this suppression was masked by the adjuvant effect of wP. By replacing wP with aP, this adjuvant effect was removed, unmasking the suppression of the tetanus-mediated response. With the increasing use of multiple aP-containing vaccines in infancy, novel approaches to adjuvants and carrier protein technology are likely to be required

    Cellular immune responses to live attenuated Japanese Encephalitis (JE) vaccine SA14-14-2 in adults in a JE/dengue co-endemic area.

    No full text
    Background Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases.</p

    Cellular Immune Responses to Live Attenuated Japanese Encephalitis (JE) Vaccine SA14-14-2 in Adults in a JE/dengue Co- Endemic Area

    No full text
    Background: Japanese encephalitis (JE) virus (JEV) causes severe epidemic encephalitis across Asia, for which the live attenuated vaccine SA14-14-2 is being used increasingly. JEV is a flavivirus, and is closely related to dengue virus (DENV), which is co-endemic in many parts of Asia, with clinically relevant interactions. There is no information on the human T cell response to SA14-14-2, or whether responses to SA14-14-2 cross-react with DENV. We used live attenuated JE vaccine SA14-14-2 as a model for studying T cell responses to JEV infection in adults, and to determine whether these T cell responses are cross-reactive with DENV, and other flaviviruses. Methods: We conducted a single arm, open label clinical trial (registration: clinicaltrials.gov NCT01656200) to study T cell responses to SA14-14-2 in adults in South India, an area endemic for JE and dengue. Results: Ten out of 16 (62.5%) participants seroconverted to JEV SA14-14-2, and geometric mean neutralising antibody (NAb) titre was 18.5. Proliferation responses were commonly present before vaccination in the absence of NAb, indicating a likely high degree of previous flavivirus exposure. Thirteen of 15 (87%) participants made T cell interferon-gamma (IFNγ) responses against JEV proteins. In four subjects tested, at least some T cell epitopes mapped cross-reacted with DENV and other flaviviruses. Conclusions: JEV SA14-14-2 was more immunogenic for T cell IFNγ than for NAb in adults in this JE/DENV co-endemic area. The proliferation positive, NAb negative combination may represent a new marker of long term immunity/exposure to JE. T cell responses can cross-react between JE vaccine and DENV in a co-endemic area, illustrating a need for greater knowledge on such responses to inform the development of next-generation vaccines effective against both diseases

    Cross-reactivity of anti-JEV IFNγ responses.

    No full text
    <p>(A) cross-reactive T cell responses to variant peptides from dengue virus (DENV) in participant VA012/3. Data are percent IFNγ<sup>+</sup> CD8<sup>+</sup> T cells from a short-term T cell line expanded with JE vaccine NS3 peptide TAVLAPTRVVAAEMAEVL in an ICS assay to the peptides indicated. Two earlier experiments expanding TCL to wild type and vaccine library peptides, which differ only in a Val/Ala substitution at position 17, outside the region of epitope conservation (dotted lines), gave the same result. Inset: Reciprocal PRNT<sub>50</sub> for all four DENV serotypes and JEV; HLA type. (B) cross-reactive T cell responses to variant peptides from West Nile virus and DENV in participant VA020/1. Data are percent IFNγ<sup>+</sup> CD8<sup>+</sup> T cells from a short-term T cell line expanded with JE vaccine E peptide GATWVDLVLEGDSCLTIM in an ICS assay to the peptides indicated. The dotted lines indicate the region of epitope conservation subsequently shown in another experiment (<a href="http://www.plosntds.org/article/info:doi/10.1371/journal.pntd.0005263#pntd.0005263.s004" target="_blank">S4 Fig</a> panel A). Inset: Reciprocal PRNT<sub>50</sub> for all four DENV serotypes and JEV; HLA type.</p
    corecore