9 research outputs found
Ionic radiocontrast inhibits endothelium-dependent vasodilation of the canine renal artery in vitro: possible mechanism of renal failure following contrast medium infusion
To determine if radiocontrast impairs vascular relaxation of the renal artery, segments (4-5 mm in length) of canine renal artery were suspended in vitro in organ chambers to measure isometric force (95% O2/5% CO2, at 37ºC). Arterial segments with and without endothelium were placed at the optimal point of their length-tension relation and incubated with 10 µM indomethacin to prevent synthesis of endogenous prostanoids. The presence of nonionic radiocontrast (iohexol, Omnipaque 350, 1 ml in 25 ml control solution, 4% (v/v)) did not alter endothelium-dependent relaxation to acetylcholine in rings precontracted with both norepinephrine and prostaglandin F2alpha (N = 6). When the rings were precontracted with prostaglandin F2alpha, the presence of ionic contrast did not inhibit the relaxation of the arteries. However, in canine renal arteries contracted with norepinephrine, the presence of ionic radiocontrast (diatrizoate meglumine and diatrizoate sodium, MD-76, 1 ml in 25 ml control solution, 4% (v/v)) inhibited relaxation in response to acetylcholine, sodium nitroprusside (N = 6 in each group), and isoproterenol (N = 5; P < 0.05). Rings were relaxed less than 50% of norepinephrine contraction. Following removal of the contrast, vascular relaxation in response to the agonists returned to normal. These results indicate that ionic radiocontrast nonspecifically inhibits vasodilation (both cAMP-mediated and cGMP-mediated) of canine renal arteries contracted with norepinephrine. This reversible impairment of vasodilation could inhibit normal renal perfusion and act as a mechanism of renal failure following radiocontrast infusion. In the adopted experimental protocol the isoproterenol-induced relaxation of renal arteries precontracted with norepinephrine was more affected, suggesting a pivotal role of the cAMP system
Psychobehavioral effects of divorced mother-headed one-child families on children in China
Owing to the national “One Child per Family” policy in China, almost all children are from one-child families. Recent economic development has led to an increase in the number of children living in single parent families. These children may suffer from more mental stress than those living in two parent families. This study aims at clarifying psychobehavioral characteristics of boys and girls from mother-headed one-child families due to divorce. Three questionnaire studies, i.e., Eysenck Personality Questionnaire for Children (EPQ), Mental Health Test (MHT), and Preliminary Problems Conduct Test (PPCT) were conducted on 465 children, aged 9 to 12 years, in three elementary schools of Chengdu, China. Twenty-one boys and 26 girls from divorced families and 186 boys and 217 girls from non-divorced families were selected as study subjects. The results of the multiple stepwise logistic regression analysis indicated that boys from divorced families suffered from neurosis, loneliness, impulsiveness, rebellious tendencies and untruthfulness, whereas girls from divorced families suffered from loneliness, horrible feelings and oppressed feelings. It is suggested that the common psychobehavioral characteristic of both boys and girls from divorced families in China is loneliness; the characteristic specific of boys is “antisocial” personality and that of girls is “anxious” personality
Antibiofilm, Antifouling, and Anticorrosive Biomaterials and Nanomaterials for Marine Applications
Formation of biofilms is one of the most serious problems affecting the integrity of marine structures both onshore and offshore. These biofilms are the key reasons for fouling of marine structures. Biofilm and biofouling cause severe economic loss to the marine industry. It has been estimated that around 10% of fuel is additionally spent when the hull of ship is affected by fouling. However, the prevention and control treatments for biofilms and biofouling of marine structures often involve toxic materials which pose severe threat to the marine environment and are strictly regulated by international maritime conventions. In this context, biomaterials for the treatment of biofilms, fouling, and corrosion of marine structures assume much significance. In recent years, due to the technological advancements, various nanomaterials and nanostructures have revolutionized many of the biological applications including antibiofilm, antifouling, and anticorrosive applications in marine environment. Many of the biomaterials such as furanones and some polypeptides are found to have antibiofilm, antifouling, and anticorrosive potentials. Many of the nanomaterials such as metal (titanium, silver, zinc, copper, etc.) nanoparticles, nanocomposites, bioinspired nanomaterials, and metallic nanotubes were found to exhibit antifouling and anticorrosive applications in marine environment. Both biomaterials and nanomaterials have been used in the control and prevention of biofilms, biofouling, and corrosion in marine structures. In recent years, the biomaterials and nanomaterials were also characterized to have the ability to inhibit bacterial quorum sensing and thereby control biofilm formation, biofouling, and corrosion in marine structures. This chapter would provide an overview of the biomaterials from diverse sources and various category of nanomaterials for their use in antibiofilm, antifouling, and anticorrosion treatments with special reference to marine applications
Notes for genera – Ascomycota
Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)