3,617 research outputs found

    LiTFSI-based room temperature ionic liquids for high energy secondary lithium ion battery

    Get PDF
    Symposium 4 - Electrochemical Energy Conversion and Storage: Advances in Battery ResearchpostprintThe 61th Annual Meeting of the International Society of Electrochemistry: Electrochemistry from Biology to Physics, Nice, France, 26 September-1 October 2010

    Genetic loci mapping for ear axis weight using recombinant inbred line (RIL) population under different nitrogen regimes in maize

    Get PDF
    Ear axis weight (EAW) is one of the important agronomic traits in maize (Zea mays L.), related to yield. To understand its genetic basis, a recombinant inbred line (RIL) population, derived from the cross Mo17 × Huangzao4, was used for quantitative trait locus mapping (QTL) for EAW under high and low nitrogen (N) regimes. The results showed that a total of three QTLs were mapped on chromosomes 2 (two) and 4 (one) under the two N regimes, which could explain phenotypic variances from 4.76 to 7.12%. They were near to their linked markers, with mapping interval of 0.2 to 1.0 cM. The two loci on chromosome 2 (bin 2.09) made EAW increase due to positive additive effects, while the other locus on chromosome 4 (bin 4.08) made EAW decrease to some extent, owing to negative additive effects. These results are beneficial for understanding the genetic basis of KNE and developing marker-assisted selection in maize breeding project.Key words: Maize (Zea mays L.), ear axis weight, quantitative trait locus, recombinant inbred line, nitrogen

    Multiple-image encryption by compressive holography

    Get PDF
    We present multiple-image encryption (MIE) based on compressive holography. In the encryption, a holographic technique is employed to record multiple images simultaneously to form a hologram. The two-dimensional Fourier data of the hologram are then compressed by nonuniform sampling, which gives rise to compressive encryption. Decryption of individual images is cast into a minimization problem. The minimization retains the sparsity of recovered images in the wavelet basis. Meanwhile, total variation regularization is used to preserve edges in the reconstruction. Experiments have been conducted using holograms acquired by optical scanning holography as an example. Computer simulations of multiple images are subsequently demonstrated to illustrate the feasibility of the MIE scheme.published_or_final_versio

    Coop-DAAB : cooperative attribute based data aggregation for Internet of Things applications

    Get PDF
    The deployment of IoT devices is gaining an expanding interest in our daily life. Indeed, IoT networks consist in interconnecting several smart and resource constrained devices to enable advanced services. Security management in IoT is a big challenge as personal data are shared by a huge number of distributed services and devices. In this paper, we propose a Cooperative Data Aggregation solution based on a novel use of Attribute Based signcryption scheme (Coop - DAAB). Coop - DAAB consists in distributing data signcryption operation between different participating entities (i.e., IoT devices). Indeed, each IoT device encrypts and signs in only one step the collected data with respect to a selected sub-predicate of a general access predicate before forwarding to an aggregating entity. This latter is able to aggregate and decrypt collected data if a sufficient number of IoT devices cooperates without learning any personal information about each participating device. Thanks to the use of an attribute based signcryption scheme, authenticity of data collected by IoT devices is proved while protecting them from any unauthorized access

    Spin-Rotation Symmetry Breaking in the Superconducting State of CuxBi2Se3

    Full text link
    Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can break additional symmetries. In particular, spin rotational symmetry is expected to be broken in spin-triplet superconductors. However, experimental evidence for such symmetry breaking has not been conclusively obtained so far in any candidate compounds. Here, by 77Se nuclear magnetic resonance measurements, we show that spin rotation symmetry is spontaneously broken in the hexagonal plane of the electron-doped topological insulator Cu0.3Bi2Se3 below the superconducting transition temperature Tc=3.4 K. Our results not only establish spin-triplet superconductivity in this compound, but may also serve to lay a foundation for the research of topological superconductivity

    Characteristics of a tropospheric ozone profile and implications for the origin of ozone over subtropical China in the spring of 2001  

    Get PDF
    Author name used in this publication: Y. S. Li2003-2004 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Schistosomiasis Research in the Dongting Lake Region and Its Impact on Local and National Treatment and Control in China

    Get PDF
    Schistosomiasis is a chronic and debilitating parasitic disease that has often been neglected because it is a disease of poverty, affecting poor rural communities in the developing world. This is not the case in the People's Republic of China (PRC), where the disease, caused by Schistosoma japonicum, has long captured the attention of the Chinese authorities who have, over the past 50–60 years, undertaken remarkably successful control programs that have substantially reduced the schistosomiasis disease burden. The Dongting Lake region in Hunan province is one of the major schistosome-endemic areas in the PRC due to its vast marshland habitats for the Oncomelania snail intermediate hosts of S. japonicum. Along with social, demographic, and other environmental factors, the recent completion and closure of the Three Gorges dam will most likely increase the range of these snail habitats, with the potential for re-emergence of schistosomiasis and increased transmission in Hunan and other schistosome-endemic provinces being a particular concern. In this paper, we review the history and the current status of schistosomiasis control in the Dongting Lake region. We explore the epidemiological factors contributing to S. japonicum transmission there, and summarise some of the key research findings from studies undertaken on schistosomiasis in Hunan province over the past 10 years. The impact of this research on current and future approaches for sustainable integrated control of schistosomiasis in this and other endemic areas in the PRC is emphasised

    Five-Year Longitudinal Assessment of the Downstream Impact on Schistosomiasis Transmission following Closure of the Three Gorges Dam

    Get PDF
    Schistosomiasis, caused by Schistosoma japonicum, is a significant parasitic disease and public health problem in China. How the parasite is transmitted there can be categorized into four distinct modes (modes I–IV) and it is predicted that the Three Gorges Dam, recently completed, will affect the way schistosomiasis is spread in these modes. We monitored transmission for a 5-year period (2002–2006) in eight villages, representative of the three modes (I–III) below the dam across four provinces (Hunan, Jiangxi, Hubei and Anhui) to determine whether there was any immediate impact of the dam on schistosomiasis spread. Human schistosomiasis incidence declined considerably within individual villages and each mode, and the yearly odds ratios (adjusted) for infection risk showed significant downward trends in all three modes over the follow-up period. The decreased human S. japonicum incidence recorded across transmission modes I–III was probably attributable to annual human and bovine praziquantel drug treatment. If an increase in schistosome transmission had occurred as a result of the dam, it would be of negligible size compared with this treatment-induced decline. There had thus been virtually no immediate impact of the TGD on schistosomiasis transmission downstream of the dam over the 5-year surveillance period

    Genetic Determinants of Circulating Sphingolipid Concentrations in European Populations

    Get PDF
    Sphingolipids have essential roles as structural components of cell membranes and in cell signalling, and disruption of their metabolism causes several diseases, with diverse neurological, psychiatric, and metabolic consequences. Increasingly, variants within a few of the genes that encode enzymes involved in sphingolipid metabolism are being associated with complex disease phenotypes. Direct experimental evidence supports a role of specific sphingolipid species in several common complex chronic disease processes including atherosclerotic plaque formation, myocardial infarction (MI), cardiomyopathy, pancreatic beta-cell failure, insulin resistance, and type 2 diabetes mellitus. Therefore, sphingolipids represent novel and important intermediate phenotypes for genetic analysis, yet little is known about the major genetic variants that influence their circulating levels in the general population. We performed a genome-wide association study (GWAS) between 318,237 single-nucleotide polymorphisms (SNPs) and levels of circulating sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), and glucosylceramide (GluCer) single lipid species (33 traits); and 43 matched metabolite ratios measured in 4,400 subjects from five diverse European populations. Associated variants (32) in five genomic regions were identified with genome-wide significant corrected p-values ranging down to 9.08 x 10(-66). The strongest associations were observed in or near 7 genes functionally involved in ceramide biosynthesis and trafficking: SPTLC3, LASS4, SGPP1, ATP10D, and FADS1-3. Variants in 3 loci (ATP10D, FADS3, and SPTLC3) associate with MI in a series of three German MI studies. An additional 70 variants across 23 candidate genes involved in sphingolipid-metabolizing pathways also demonstrate association (p = 10(-4) or less). Circulating concentrations of several key components in sphingolipid metabolism are thus under strong genetic control, and variants in these loci can be tested for a role in the development of common cardiovascular, metabolic, neurological, and psychiatric diseases
    corecore