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In the field of offshore renewable energy, impermeable plates are used as underwater lenses to amplify the wave
amplitude, and perforated plates can harness wave energy as a power take-off device. Within the framework
of the linear potential-flow theory, the water wave scattering by impermeable and perforated horizontal plates
is investigated in the present study, and both circular and elliptical plates are considered. The hypersingular
integral equation is constructed to model the interaction between water waves and plates of small thickness.
For wave scattering by impermeable plates with the focus on wave amplification, wave interference effects
due to multiple plates can be utilized to achieve large wave amplification. For perforated plates used for
harnessing wave energy, deploying an array of elliptical plates is promising if the deployment line coincides
with the major axis and the incident wave propagates along the minor axis. The study gives an insight into
harnessing energy from water waves by horizontal plates.

Keywords: Hypersingular integral equation; Perforated plate; Wave amplification; Wave energy

I. INTRODUCTION

Impermeable and perforated plates are omnipresent in
a wide range of engineering applications. In marine en-
gineering, thin plates are attached to Spar platforms to
provide extra added mass and damping so that violent
wave-frequency heave resonance is avoided (Molin, 2011).
Fixed and floating breakwaters are usually equipped with
perforated plates to attenuate waves in coastal engineer-
ing (Huang, Li, and Liu, 2011; Behera and Sahoo, 2015;
Selvan et al., 2021). In offshore renewable energy, piezo-
electric and perforated disks (Renzi, 2016; Meylan, Ben-
netts, and Peter, 2017; Zheng et al., 2020b,a) as well
as flap-type wave energy converters (WECs) (Renzi and
Dias, 2012; Sarkar, Renzi, and Dias, 2014) have huge po-
tential for wave-power extraction. Moreover, imperme-
able plate is usually used as a ‘wave lens’ to focus waves
so that wave energy is amplified (Stamnes et al., 1983;
Newman, 2015), and perforated plate can be adopted to
simulate the performance of plate-shaped WECs, pro-
vided that a special power take-off (PTO) system is de-
signed (Meylan, Bennetts, and Peter, 2017; Zheng et al.,
2020a,b). In addition to the artificial structures as men-
tioned above, there are also some plate-shaped structures
in the nature, e.g., sea ice and stingrays, the hydrody-
namics of which is of significant interest for engineering
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and biology (e.g., see Meylan et al., 2015; Li, Wu, and
Ji, 2018; Li, Wu, and Shi, 2018; Bottom II et al., 2016).

In the context of wave-structure interactions, the
boundary integral method is widely applied, and great
success has been witnessed in fields of marine engineer-
ing, coastal engineering, and offshore renewable energy,
etc. However, the direct application of a boundary inte-
gral equation to deal with plates of vanishing thickness is
problematic, and the coefficient matrix may even be ill-
conditioned. The reason is that two opposite panels on
the side surfaces of a shell structure yield almost the same
influence coefficients resulting in parallel vectors. As a
consequence, the coefficient matrix will be ill-conditioned
with a large condition number, leading to loss of accu-
racy of the numerical solutions. As a compromise, one
may also model the thin plate as finite thickness to avoid
parallel vectors, which however requires distribution of
singularities over all surfaces of the plate, thus unneces-
sarily increasing the number of unknowns and computa-
tional costs.

To resolve this issue, an alternative is the application
of the multi-domain boundary element method (Mackay,
Liang, and Johanning, 2021), but this method is limited
to the scenario that the perforated surface together with
a free surface enclose a bounded fluid region. There-
fore, a general treatment is to model the flow induced
by a structure of small thickness with a dipole distri-
bution and consider the velocity potential jump across
the structure (Parsons and Martin, 1992; Martin and
Farina, 1997). The modeling of a dipole distribution
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gives rise to a hypersingular integral equation, which re-
quires careful treatment in the numerical implementation
(Hariri Nokob and Yeung, 2015).

The hypersingular integral equation originally devel-
oped in solid mechanics was brought to solve the wave-
structure interaction problems by Parsons and Martin
(1992) and Martin and Farina (1997). In the 21st
century, the hypersingular integral equation has been
widely applied in applications, such as: floating harbors,
and offshore renewable energy (Renzi and Dias, 2012,
Hariri Nokob and Yeung, 2015, Porter, 2015). It has
been demonstrated that the hypersingular integral equa-
tion can deal with thin shell structures very well. How-
ever, the existing work on hypersingular integral equa-
tions (Renzi and Dias, 2012, Hariri Nokob and Yeung,
2015, Porter, 2015) is tailored to specific problems. The
objective of the present study is to develop a general
method applicable to structures of arbitrary geometry.

In the present study, the linear interaction between wa-
ter waves and impermeable as well as perforated plates is
investigated by a general hypersingular integral equation.
Despite diverse usefulness of impermeable and perforated
plates, we focus on the wave amplification by imperme-
able plates and wave energy absorption by perforated
plates. While the single circular plate has been are exten-
sively studied in the literature (Martin and Farina, 1997;
Porter, 2015), multiple circular plates are considered in
this paper. Unlike the work in Zheng et al. (2020a,b),
the present approach is more general and capable of an-
alyzing multiple plates with staggered arrangement with
horizontal overlapping. In addition to circular plates, the
hydrodynamic performance of elliptical plates, which has
been rarely studied in the literature, is also investigated.
The layout of the paper is as follows.

In Sect. II, the basic equations, including: the hyper-
singular integral equation and boundary conditions, are
formulated. A method to deal with interactions between
water waves and submerged impermeable/perforated
plates is developed. The verification of the developed
numerical method is conducted in Sect. III via compar-
ing the numerical solutions with the existing benchmark
results documented in the literature. In Sect. IV, wave
scattering by impermeable plates is studied with the fo-
cus on the wave amplification. Large wave amplification
can be achieved by deploying an array of impermeable
plates making use of wave interference effects. In Sect. V,
wave scattering by perforated plates is studied, and the
focus is placed on wave energy absorption. Recommen-
dations for efficiently harnessing wave energy are given.
Lastly, concluding remarks and future perspectives are
presented in Sect. VI.

II. BASIC EQUATIONS

Basic equations and boundary conditions within the
context of linear potential-flow theory are now formu-
lated. Despite limitations of small wave steepness, the

applicability of the linear potential-flow theory has been
well justified in engineering practice (see Mei, Stiassnie,
and Yue, 2017, Chapt. 8).

A three-dimensional Cartesian system of coordinates
Oxyz is defined with the Oxy plane coinciding with the
undisturbed free surface and Oz axis pointing positively
upward. In the study of wave-structure interactions in
which the inertial effect is predominant (Faltinsen, 1993;
Molin, 2002), it is usually assumed that the fluid is in-
viscid and incompressible, and the flow is irrotational so
that a velocity potential Φ, satisfying ∇2Φ = 0 in a fluid
domain of infinite lateral extent and water depth d, ex-
ists. Under an assumption of small wave steepness, the
problem can be linearized, and the validity of the linear
model to deal with wave scattering by horizontal plates
has been demonstrated in Zheng et al. (2020b).

In a steady state, the velocity potential is written as
Φ(x, y, z, t) = Re[φ(x, y, z)e−iωt], where t denotes time
and ω means the angular frequency of oscillation. For the
wave scattering problem, the total potential in the flow
field, diffraction potential φD, can be decomposed into
an incident wave potential φI and a scattering potential
φS, i.e.: φD = φI + φS. The boundary-value problem for
the scattering potential φS is written as

∇2φS = 0 in the fluid domain,

(1a)

− ω2φS + g
∂φS
∂z

= 0 on z = 0,

(1b)
∂φS
∂z

= 0 on z = −d,
(1c)

lim
R→∞

√
R

(
∂φS
∂R
− ik0φS

)
= 0 in the far field,

(1d)
∂φS
∂n

= −∂φI
∂n
− iσ(φ+ − φ−) on S.

(1e)

Equations (1a) – (1e) correspond to the Laplace equa-
tion, linearized free-surface boundary condition, bottom
condition, far-field radiation condition, and body bound-
ary condition, respectively. g denotes the gravitational
acceleration, n the vector normal to the structure, S the
plate surface, φ+ and φ− the velocity potential on the
upper and lower sides of the plates, and φI the velocity
potential of incident waves expressed as (Newman, 1977):

φI = −i
ag

ω

cosh k0(z + d)

cosh k0d
eik0(x cos β+y sin β), (2)

where k0 denotes the wavenumber in finite water depth
satisfying ω2 = gk0 tanh k0d, a is the wave amplitude,
and β means the wave heading. In the body boundary
condition (1e), σ represents a porosity parameter, which
may be expressed as (Chwang, 1983; Chwang and Chan,
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1998):

σ =
bk0
2π

, (3)

where b is a nondimensional parameter associated with
the solidity ratio. Here, both impermeable and perfo-
rated plates are allowed for. When the plate surface is
impermeable, σ is null.

To solve the Laplace equation, a boundary integral
equation is adopted. According to Parsons and Martin
(1992) and Martin and Farina (1997), the flow induced
by a plate of small thickness can be represented by a
dipole distribution

−4πφS(x) =

∫∫
S

ψ(ξ)
∂G(x, ξ)

∂nξ
dS, (4)

where x ≡ (x, y, z) and ξ ≡ (x0, y0, z0) denote the flow-
field point and singularity point, respectively, and ψ =
φ+ − φ− stands for the velocity potential jump across
the plate surface. The free-surface Green function G,
satisfying all conditions in (1) except the body boundary
condition (1e), is expressed as (Wehausen and Laitone,
1960)

G = −1

r
− 1

r′
+GF , (5a)

where

r =
√
R2 + (z − z0)2 and r′ =

√
R2 + (z + z0 + 2d)2

(5b)
with R =

√
(x− x0)2 + (y − y0)2, and the free-surface

term GF in finite water depth is in the form of a single
wavenumber integral

GF = −2 x

∫ ∞
0

(k +K) cosh k(z + d) cosh k(z0 + d)

(k sinh kd−K cosh kd)ekd
J0(kR)dk,

(5c)

where K = ω2/g is the wavenumber in deep water, and
J0 denotes the zeroth-order Bessel function of the first
kind. The integral in Eq. (5c) is interpreted as bypss-
ing the pole at k = k0 from below so that the radiation
condition is satisfied. The evaluation of the free-surface
term GF in Eq. (5c) has been extensively studied in the
literature (Newman, 1985, Chen, 1993, Liu et al., 2020,
Mackay, 2019). In the present study, the free-surface
term is evaluated using the algorithm described by New-
man (1985).

To determine the velocity potential jump ψ(ξ), we take
the normal derivative of the integral equation (4) result-
ing in a hypersingular integral equation on the body sur-
face:∫∫

S

ψ(ξ)
∂2G(x, ξ)

∂nx∂nξ
dS = 4π

[
∂φI(x)

∂n
+ iσψ(x)

]
, (6)

where the body boundary condition (5c) is recalled. Dis-
cretization of the plate surface yields a finite number

quadrilateral panels. Over each panel, the velocity poten-
tial jump is assumed constant, and then the discretized
hypersingular integral equation is written in the form of

[A]{ψ} = {b}, (7)

in which the elements of the coefficient matrix [A] are
expressed as

Ai,j =

∫∫
Sj

∂2G(x, ξ)

∂nx∂nξ
dS = ARi,j +AFi,j . (8a)

Here ARi,j and AFi,j correspond to the Rankine and free-
surface terms in the free-surface Green function, which
are written as

ARi,j =

∫∫
Sj

∂2

∂nx∂nξ

(
−1

r
− 1

r′

)
dS, (8b)

AFi,j =

∫∫
Sj

∂2GF (x, ξ)

∂nx∂nξ
dS. (8c)

The hypersingular feature stems from the calculation of
the normal velocity induced by a dipole distribution as
in Eq. (8a), which requires special attention in the nu-
merical implementation. This difficulty has been recently
circumvented in Liang, Shao, and Chen (2021). The uni-
form dipole distribution can be transformed to a vor-
tex ring comprising edge segments of the panel, and the
induced velocity components are then obtained by the
Biot-Savart law. For the integration of second derivatives
of the free-surface term GF over a panel, the numerical
quadrature rule has been applied.

Given the velocity potential jump ψ determined by the
hypersingular integral equation (4), the wave force acting
on structures can be obtained

F = −iωρ

∫∫
S

ψ(x)ndS, (9)

where ρ represents the water density. Based on the
dynamic free-surface boundary condition, the scattered
free-surface wave elevation is obtained:

ES =
iω

g
φS(x, y, 0), (10)

and the free-surface elevation of diffracted waves E com-
prising of incident waves EI and scattered waves ES is
then written as

E = EI + ES with EI = aeik0(x cos β+y sin β). (11)

When the plate is perforated, it can be used as a PTO
device to harness wave power. Following Zheng et al.
(2020a,b), the energy absorbed by a submerged perfo-
rated plate is expressed as:

Pdiss =
ρω

2

N∑
n=1

σn

∫∫
Sn

‖ψ‖2dS, (12)
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where Sn and σn denote the area and the corresponding
perforation parameter of panel n. Given the incident
wave energy per unit width (Newman, 1977)

Pin =
ρga2

2

ω

2k0

(
1 +

2k0d

sinh 2k0d

)
, (13)

the nondimensional absorbed wave energy is written as

χdiss = k0Pdiss/Pin. (14)

III. VERIFICATION OF THE NUMERICAL METHOD

Verification of the developed numerical method is now
considered via comparing with the existing benchmark
results.

The convergence test is first conducted via calculat-
ing the wave exciting force by an impermeable circular
plate of a radius R. The normalized submergence of the
plate is v/R = 0.2, and the water depth is d/R = 2.0,
where v denotes the submergence depth of the plate.
Three different mesh resolutions are considered, which
correspond to 800, 3200, and 12800 quadrilateral pan-
els, and are identified as ‘Coarse’, ‘Medium’, and ‘Fine’,
respectively. Fig. 1 depicts the wave exciting forces on
the impermeable circular plate as a function of normal-
ized wavenumber k0R, and comparison is made with the
analytical solution determined by the method of eigen-
function expansion in Zheng et al. (2020a). The vertical
wave exciting force is nondimensionalized with respect
to πρgaR2. It is observed that the results associated
with ‘Medium’ and ‘Fine’ mesh resolutions are in good
agreement, whereas the difference at the peak from those
with ‘Coarse mesh’ is appreciable. Moreover, the results
associated with ‘Medium mesh’ and ‘Fine mesh’ agree
well with the analytical solution. It indicates that the
‘Medium mesh’ can yield converged and accurate results,
and this mesh density will be used hereafter.

0 1 2 3 4 5
k0R

0.0

0.5

1.0

1.5

2.0

||F
z
||/

(π
ρ
g
a
R

2
)

Coarse

Medium

Fine

Analytical

FIG. 1: Nondimensional wave exciting forces for three
different mesh resolutions for v/R = 0.2, and d/R = 2.0.

To verify the method applied to perforated plates, the
wave power absorption by a single perforated plate is con-

sidered. Fig. 2 depicts the nondimensional wave energy
defined in Eq. (14) absorbed by a single circular plate
for different submergence depths, inducing: v/R = 0.2,
0.5, and 1.0 as shown in subplots (a), (b), and (c), re-
spectively. The water depth is d/R = 2.0. Generally, the
smaller the immersion depth is, the higher wave power
is harnessed. The reason is that the wave kinematics
decay with the immersion depth. Comparison is made
with the analytical solution by the method of eigenfunc-
tion expansion described in Zheng et al. (2020a), and
the agreement is satisfactory. Therefore, the developed
numerical method is verified.

IV. IMPERMEABLE PLATES

Wave scattering by impermeable circular and elliptical
plates is now considered. The elliptical plate is sketched
in Fig. 3, the semi-major and semi-minor axes are de-
noted by R1 and R2, respectively. Here, we define the
aspect ratio of the ellipse as Λ = R1/R2. When R1 and
R2 are identical, the ellipse reduces to a circle.

A. Single impermeable plate

Fig. 4 displays the free-surface pattern of the diffracted
wave field, consisting of both incident and scattering
waves, by a submerged impermeable circular plate at
k0R = 0.7, v/R = 0.2, and d/R = 2.0. The white cir-
cle corresponds to the frame of the circular plate. Due
to the diffraction effect by the submerged plate, a large
wave amplification up to 4.0 above the circular plate has
been achieved.

Figs. 5 and 6 exhibit the wave exciting force on im-
permeable elliptical plates and the generated free-surface
elevation at (x, y) = (0, 0) as a function of normalized
wavenumber k0

√
R1R2 for different wave headings. The

wave exciting force and free-surface elevation are nondi-
mensionalized with respect to πρgaR1R2 and a, respec-
tively. Two aspect ratios Λ = 2.0 and Λ = 3.0 are con-
sidered in subplots (a) and (b). The nondimensional im-
mersion depth is v/

√
R1R2 = 0.2 and the water depth

is d/
√
R1R2 = 2.0. Comparison is made with the case

of a circular plate of the same area. It is observed from
Fig. 5 that the peak value of the wave exciting force act-
ing on an elliptical plate for all wave incidence angles are
apparently smaller than that acting on a circular plate
of the same area. Moreover, the peak value of the wave
exciting force decreases with increasing the aspect ratio.
For the free-surface elevation as in Fig. 6, the tendency
is pretty much the same.

Figs. 7 and 8 display the colored plots of the modulus
of the free-surface elevation ‖E‖/a at k0

√
R1R2 = 0.7 re-

lated to the diffracted wave field by submerged elliptical
plates for aspect ratios Λ = 2.0 and Λ = 3.0, respectively.
The submergence and water depth are the same as those
adopted in Fig. 6. Comparing subplots (a), (b), and (c),
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FIG. 2: Wave energy absorption by a single perforated
circular plate for different submerged depths for

d/R = 2.0, and b = 5.0: (a) v/R = 0.2; (b) v/R = 0.5;
(c) v/R = 1.0. Comparison is made with the analytical

solution described in Zheng et al. (2020a).

the maximum wave amplitudes diffracted by the ellipti-
cal plates in different wave headings are comparable. In
contrast to the free-surface pattern by a circular plate
as illustrated in Fig. 4, the maximum wave amplitude is
smaller. Moreover, the maximum wave amplitude is de-

b

x

y

R1
R2

FIG. 3: Sketch of wave interacting with an elliptical
plate.
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FIG. 4: Colored plot of the modulus of the free-surface
elevation ‖E‖/a related to diffracted wave field by a
submerged impermeable circular plate for k0R = 0.7,

v/R = 0.2, and d/R = 2.0.

creasing with increasing the aspect ratio of the elliptical
plate. Therefore, it indicates that the performance of a
circular plate is better than that of the elliptical one in
terms of wave amplification.

B. Multiple impermeable plates

As a sequel to the single impermeable plate, wave scat-
tering by multiple plates is now considered. Because the
circular plate has better wave amplification performance
than the elliptical one of the same area and immersion
depth, the focus will be placed on multiple circular plates
in this subsection. A deployment of two submerged im-
permeable circular plates in a side-by-side configuration
is first considered. The two circular plates have the iden-
tical submergence depth and radius, and the deployment
of them is presented in Table I, where (Xj , Yj , Zj) de-
notes the nondimensional coordinates of the center of the
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R

1
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(b)

FIG. 5: Nondimensional wave exciting forces on
elliptical plates for different wave headings for
v/
√
R1R2 = 0.2, and d/

√
R1R2 = 2.0: (a)

Λ = R1/R2 = 2.0; (b) Λ = R1/R2 = 3.0. Comparison is
made with that by a circular plate of the same area.

center of plate j, i.e.: (Xj , Yj , Zj) = (xj , yj , zj)/
√
R1R2.

Plate index j Center’s coordinates (Xj , Yj , Zj)
1 (−1.25, 0.00,−0.20)
2 ( 1.25, 0.00,−0.20)

TABLE I: Coordinates of centers of a two-circular-plate
deployment.

Fig. 9 depicts the vertical wave exciting force as a func-
tion of the normalized wavenumber k0R for different in-
cident wave directions, including: following sea β = 0◦,
quartering sea β = 45◦, and beam sea β = 90◦ displayed
in subplots (a), (b), and (c), respectively. The water
depth is d/R = 2.0. In all wave headings, the vertical
forces acting on both circular plates reach a peak near
k0R ≈ 0.7. Because of the symmetrical setup, the wave
forces experienced by two circular plates under the beam
sea excitation are identical as expected. Under the fol-
lowing sea and quartering sea excitations, the peak values

0 1 2 3 4 5
k0

√
R1R2

0

1

2

3

4

||E
||/
a

β = 0◦

β = 45◦

β = 90◦

Circular

(a)

0 1 2 3 4 5
k0

√
R1R2

0

1

2

3

4

||E
||/
a

(b)

FIG. 6: Nondimensional free-surface elevations
(x, y) = (0, 0) induced by submerged elliptical plates for
v/
√
R1R2 = 0.2, and d/

√
R1R2 = 2.0 for different wave

headings: (a) Λ = R1/R2 = 2.0; (b) Λ = R1/R2 = 3.0.
Comparison is made with that by a circular plate of the

same area.

are much larger than that in the beam sea condition, and
the wave force acting on the weather-side plate is greater
than that acting on the lee-side one.

Fig. 10 exhibits the free-surface elevations normalized
by the incident wave amplitude for different wave di-
rections. The free-surface elevations at three locations,
including: (x, y)/R = (X1, Y1), (x, y)/R = (0, 0), and
(x, y)/R = (X2, Y2), are displayed in subplots (a), (b),
and (c), respectively. When k0R ≤ 1.0, the free-surface
elevations above the two circular plates as shown in sub-
plots (a) and (c) are significantly larger than that at the
origin displayed in subplot (b). Under the following sea
and quartering sea excitations, the free-surface elevations
above the centers of the two circular plates reach the
maximum near k0R ≈ 0.7 as shown in the top and bot-
tom panels. Moreover, the free-surface elevation above
the weather-side plate is higher than that above the lee-
side one.
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FIG. 7: Colored plots of the modulus of the free-surface
elevation ‖E‖/a related to diffracted waves by a
submerged elliptical plate of the aspect ratio

Λ = R1/R2 = 2.0 for k0
√
R1R2 = 0.7, v/

√
R1R2 = 0.2,

and d/
√
R1R2 = 2.0: (a) β = 0◦; (b) β = 45◦; (c)

β = 90◦.
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FIG. 8: Colored plots of the modulus of the free-surface
elevation ‖E‖/a related to diffracted waves by a
submerged elliptical plate of the aspect ratio

Λ = R1/R2 = 3.0 for k0
√
R1R2 = 0.7, v/

√
R1R2 = 0.2,

and d/
√
R1R2 = 2.0: (a) β = 0◦; (b) β = 45◦; (c)

β = 90◦.
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FIG. 9: Nondimensional vertical wave exciting forces on
two impermeable circular plates for different wave
headings: (a) β = 0◦; (b) β = 45◦; (c) β = 90◦.

In Fig. 11, the colored plots of the normalized modulus
of the free-surface elevations ‖E‖/a for wave diffraction
by two impermeable circular plates at k0R = 0.7 and
d/R = 2.0 are illustrated. The free-surface patterns in
following sea β = 0◦, quarter sea β = 45◦, and beam
sea β = 90◦ conditions are displayed in subplots (a), (b),
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FIG. 10: Nondimensional free-surface elevation at
different locations for a two-circular-plate deployment:

(a) (x, y) = (−1.25R, 0); (b) (x, y) = (0, 0); (c)
(x, y) = (1.25R, 0).

and (c), respectively. In the following sea condition, the
wave amplification above the weather-side plate is higher
than the lee-side one, and it is much larger than the sin-
gle plate scenario as shown in Fig. 4. By increasing the
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FIG. 11: Colored plots of the modulus of the
free-surface elevation ‖E‖/a related to diffracted waves
by two impermeable circular plates at k0R = 0.7: (a)

β = 0◦; (b) β = 45◦; (c) β = 90◦.

wave incidence angle, the maximum wave amplitude is
decreasing. The maximum wave amplitude in the beam
sea condition as shown in subplot (c) is much smaller
than that under following sea and quartering sea exci-
tations as well as the single plate scenario. Therefore,
large wave amplification by an array of impermeable cir-
cular plates can be achieved if the wave propagates in line
with the deployment line. It is expected that the large
wave amplification by an array of circular plates can be
favorable in enhancing wave power absorption of WECs
floating at the free surface (Wang and Zhang, 2021).

Then, wave diffraction by four identical impermeable
circular plates is considered, and the deployment of four
circular plates is presented in Table II. To avoid overlap-
ping, circular plates ‘3’ and ‘4’ have deeper immersions.

Plate index j Center’s coordinates (Xj , Yj , Zj)
1 (−1.25, 0.00,−0.20)
2 ( 1.25, 0.00,−0.20)
3 ( 0.00,−1.25,−0.22)
4 ( 0.00, 1.25,−0.22)

TABLE II: Coordinates of centers of a
four-circular-plate deployment.

Fig. 12 depicts the vertical wave exciting forces act-
ing on the four impermeable circular plates as deployed
in Table II, and different wave incidence angles, includ-
ing: following sea β = 0◦, quartering sea β = 45◦, and
beam sea β = 90◦, are presented in subplots (a), (b),
and (c), respectively. In the present deployment, the
lee-side circular plate experiences larger wave force for
k0R ≤ 1.0, which is broader than the range of k0R, i.e.,
k0R < 0.7, for the two-circular-plate deployment case
showing a larger wave force acting on the lee-side circu-
lar plate (see Fig. 9). Besides, the oscillation in wave
forces is strong indicating that the interference effect is
significant.

In Fig. 13, nondimensional free-surface elevations
at five locations, including: (x, y)/R = (0.0, 0.0),
(−1.25, 0.0), (1.25, 0.0), (0.0,−1.25), and (0.0, 1.25), are
presented in subplots (a), (b), (c), (d), and (e), respec-
tively. At the origin (0.0, 0.0), the free-surface elevation
is almost independent of wave headings for k0R ≤ 0.8
corresponding to long wavelength. At locations above
the four circular plates, however, the oscillation in the
free-surface elevation is strong due to interference effects.
Under the following sea and beam sea excitations, there
are two peaks with commensurate peak values above the
lee-side plate as shown in the third and bottom panels.
Moreover, the peak value above the lee-side plate is larger
than that above the weather-side one.

Fig. 14 exhibits the colored plots of the modulus of the
normalized free-surface elevations ‖E‖/a related to waves
diffracted by a four-circular-plate deployment as in Table
II at k0R = 0.7. White circles correspond to frames of
two circular plates of shallower immersion, whereas gray
circles to those of deeper submergence. The presence of
horizontal overlapping regions indicates that the method
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FIG. 12: Nondimensional vertical wave exciting forces
on four impermeable circular plates for different wave

headings: (a) β = 0◦; (b) β = 45◦; (c) β = 90◦.

of eigen-function expansion cannot be applied. The free-
surface patterns under following sea β = 0◦, quarter sea
β = 45◦, and beam sea β = 90◦ excitations are presented
in subplots (a), (b), and (c), respectively. In the follow-
ing sea and beam sea conditions as plotted in subpolots
(a) and (c), the free-surface elevations above two circular
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FIG. 13: Nondimensional free-surface elevation at
different locations: (a) (x, y) = (0, 0); (b)

(x, y) = (−1.25R, 0); (c) (x, y) = (1.25R, 0); (d)
(x, y) = (0,−1.25R) ; (e) (x, y) = (0, 1.25R).

plates of lateral with respect to the wave direction are
small. Apparent wave amplifications above the front and
rear circular plates are observed, and larger wave am-
plification occurs above the rear circular plate. Under
the quartering sea excitation as in subplot (b), the free-
surface elevations above the circular plate area are larger
than elsewhere in general, and wave amplifications over
the four circular plates are comparable.

V. PERFORATED PLATES

Then, our attention is paid to perforated plates, which
are widely adopted to capture wave energy. The energy
absorption performances of both circular and elliptical
plates will be considered in this section.

A. Single perforated plate

Wave power absorption by a single perforated plate is
first of all considered. Fig. 15 depicts the nondimensional
wave power absorption χdiss defined in Eq. (14) as a func-
tion of normalized wavenumber k0

√
R1R2 for different

wave incidence angles, and comparison is made with the
wave energy captured by a perforated circular plate of
the same area. Aspect ratios Λ = R1/R2 = 2.0 and
Λ = 3.0 are considered as in subplots (a) and (b), respec-
tively. When the incident wave propagates along the ma-
jor axis of the ellipse (β = 0◦), the captured wave power
is lower than that in quartering sea (β = 45◦) and beam
sea β = 90◦ conditions in the range 3 < k0

√
R1R2 < 10

where wave energy absorption ratio is high. Under the
quartering sea excitation, the wave energy absorption by
an elliptical plate is comparable with the circular one.
As the wave incidence direction is in line with the mi-
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FIG. 14: Colored plots of the modulus of the
free-surface elevation ‖E‖/a related to diffracted waves
by four impermeable circular plates at k0R = 0.7: (a)

β = 0◦; (b) β = 45◦; (c) β = 90◦.
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nor axis of the ellipse (β = 90◦), the performance of the
wave power absorption is the best as 3 < k0

√
R1R2 < 10,

and it is appreciably larger than the wave power by the
circular plate of the same area.
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FIG. 15: Wave power absorption by perforated elliptical
plates for different wave headings at v/

√
R1R2 = 0.2,

d/
√
R1R2 = 2.0 and b = 5.0: (a) Λ = R1/R2 = 2.0; (b)

Λ = R1/R2 = 3.0. Comparison is made with the results
associated with a perforated circular plate of the same

area.

To further investigate the influences of the normal-
ized wavenumber and wave heading on wave power ab-
sorption χdiss, colored plots of wave energy absorption
by a single perforated elliptical plate are exhibited in
Fig. 16, and results associated with Λ = R1/R2 = 2.0
and Λ = 3.0 are presented in subplots (a) and (b), re-
spectively. Wave incidence angles β = 0◦ and β = 90◦

correspond to wave propagating along the major and mi-
nor axes of the ellipses, respectively. In general, for both
the considered Λ values, large wave power absorption
can be obtained within the range 50◦ < β < 90◦ and
5.0 < k0

√
R1R2 < 9.0. In this range, the harnessed wave

energy is increasing with the wave incidence angle β, and
a maximum is reached at β = 90◦. Moreover, by com-
paring subplots (a) and (b), the elliptical plate of the

aspect ratio Λ = 3.0 produces higher energy than that of
Λ = 2.0, which indicates a larger aspect ratio is beneficial
to wave power absorption.
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FIG. 16: Colored plots of the wave energy absorption
χdiss by a single perforated elliptical plate varying with
different normalized wavenumbers k0

√
R1R2 and wave

incidence angles β at v/
√
R1R2 = 0.2, and

d/
√
R1R2 = 2.0: (a) Λ = R1/R2 = 2.0; (b)

Λ = R1/R2 = 3.0.

To delve deeper into the influence of the aspect ratio
of ellipse on wave energy harnessing, Fig. 17 displays a
colored plot of the wave energy absorption χdiss by a sin-
gle perforated elliptical plate as a function of normalized
wavenumbers k0

√
R1R2 and aspect ratios Λ = R1/R2 in

beam sea condition (β = 90◦). This colored plot cor-
roborates the conclusion that the maximum wave power
absorption in increasing with the aspect ratio. When the
aspect ratio Λ = R1/R2 is greater than 3.5, the increment
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in peak value becomes slow, nevertheless the bandwidth
of the peak is enlarged.
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FIG. 17: Colored plot of the wave energy absorption
χdiss by a single perforated elliptical plate varying with
different normalized wavenumbers k0

√
R1R2 and aspect

ratios Λ = R1/R2 at β = 90◦, v/
√
R1R2 = 0.2, and

d/
√
R1R2 = 2.0.

Fig. 18 illustrates the nondimensional wave energy
χdiss by a perforated elliptical plate varying with different
normalized wavenumbers k0

√
R1R2 and perforation coef-

ficients b. The results for aspect ratios Λ = R1/R2 = 2.0
and Λ = R1/R2 = 3.0 are displayed in subplots (a) and
(b) respectively. It can be seen that the maximum wave
energy can be achieved by rendering the perforation coef-
ficient b = 4.0. This plot gives a guidance of the selection
of the perforation coefficient.

B. Multiple perforated plates

Then, we focus on wave scattering by multiple per-
forated plates in the beam sea condition (β = 90◦) in
which the wave power harnessing reaches the maximum.
The study presented in Subsection VA indicates that
a perforated elliptical plate has better wave energy ab-
sorption performance than the circular one. Therefore,
only elliptical plates are considered in this subsection,
and the aspect ratio is set Λ = R1/R2 = 3.0. Fig. 19
shows two typical arrangements of two elliptical plates
under the beam sea excitation, including: tandem ar-
rangement, and side-by-side arrangement as illustrated
in subplots (a) and (b), respectively.

Table III shows the locations of centers of two iden-
tical perforated elliptical plates in a tandem arrange-
ment. The corresponding wave power absorption under
the beam sea excitation (β = 90◦) is depicted in Fig. 20,
and comparison is made with the results of a single el-
liptical plate of the same size as in Fig. 15. Due to the
symmetrical setup, the wave energy absorption for two
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FIG. 18: Colored plots of the wave energy absorption
χdiss by a single perforated elliptical plate varying with

different normalized wavenumbers k0
√
R1R2 and

perforation coefficients b at v/
√
R1R2 = 0.2, and

d/
√
R1R2 = 2.0: (a) Λ = R1/R2 = 2.0; (b)

Λ = R1/R2 = 3.0.

plates is identical as expected. Furthermore, although
the overall difference from the results of a single ellipti-
cal plate is inappreciable, positive interference effect on
wave power absorption can be observed for some specified
wave conditions, e.g., k0

√
R1R2=1.2 and 2.3.

Plate index j Center’s coordinates (Xj , Yj , Zj)
1 (−2.00, 0.00,−0.20)
2 ( 2.00, 0.00,−0.20)

TABLE III: Coordinates of centers of two elliptical
plates in a tandem arrangement.

Table IV exhibits the locations of centers of two identi-
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FIG. 19: Sketch of two deployments of two elliptical
plates under the beam sea excitation: (a) Tandem

arrangement; (b) Side-by-side arrangement.

cal perforated elliptical plates in a side-by-side arrange-
ment, and the corresponding wave power absorption is
depicted in Fig. 21. Again, comparison is made with the
results of a single elliptical plate of the same size pre-
sented in Fig. 15. In this setup, the wave power absorp-
tion by the weather-side plate is consistent with that by
a single elliptical plate indicating that the interference is
inconsequential. Nevertheless, the wave energy captured
by the lee-side plate is reduced significantly resulting in
the drop in the averaged power harnessed. The reason is
that the weather-side plate acts as a breakwater resulting
in considerable wave attenuation downstream, and thus
the wave power absorbed by the lee-side plate is reduced
dramatically. Therefore, the side-by-side arrangement is
not recommended in the deployment of elliptical plates
from the perspective of wave power absorption.

Plate index j Center’s coordinates (Xj , Yj , Zj)
1 (0.00,−1.00,−0.20)
2 (0.00, 1.00,−0.20)

TABLE IV: Coordinates of centers of two elliptical
plates in a side-by-side arrangement.
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FIG. 20: Wave energy absorption by two perforated
elliptical plates in a tandem arrangement for β = 90◦,
v/
√
R1R2 = 0.2, and d/

√
R1R2 = 2.0. Comparison is

made with the results of a single elliptical plate.
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FIG. 21: Wave energy absorption by two perforated
elliptical plates in aside-by-side arrangement for
β = 90◦, v/

√
R1R2 = 0.2, and d/

√
R1R2 = 2.0.

Comparison is made with the results of a single
elliptical plate.

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

Wave scattering by circular and elliptical plates is in-
vestigated by solving the hypersingular integral equation
under an assumption of small wave steepness k0a � 1
with the focus on wave energy utilization. Both imper-
meable and perforated plates are considered. The former
is associated with wave amplification, whereas the latter
with wave energy absorption. Through this study, the
following conclusions can be drawn:

1. The impermeable plates can be used as a ‘wave
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lens’ to achieve wave amplification. The circular
plate performs better than the elliptical one of the
same area, and the wave interference effect due to
multiple circular plates can be made use of to fur-
ther increase the wave amplification.

2. Analogous to the damping effect of the PTO, the
perforated plate can be adopted to harness wave
energy. Compared to the circular plate, the ellipti-
cal plate has better wave power absorption perfor-
mance provided the incident wave propagates along
the minor axis. For an array of elliptical plates, the
tandem arrangement with the major axis aligned
and deployment line perpendicular to the incident
wave direction is recommended.

The present work is focused on the study on water wave
interaction with horizontal rigid plates. In spite of this,
the model developed in this paper can be employed to
solve wave diffraction and radiation by any thin-walled
structures, e.g., open cylinder, arc-shaped breakwater,
etc. Moreover, the application of hypersingular integral
equations to deal with surface-piecing thin-walled struc-
tures does not suffer from irregular frequencies associated
with the uniqueness and existence of the solution (Liang
et al., 2020). The present algorithm can also be extended
to account for hydroelasticity so that flexible structures
can be dealt with, and this will be reported in another
work. The linear approximation for small wave steepness
was employed throughout the paper and viscous effects
were out ruled; hence the model is not suitable for in-
teractions between extreme waves and structures, which
will be left for future work.
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