1,304 research outputs found

    CHIANTI - an atomic database for emission lines. VII. New Data for X-rays and other improvements

    Get PDF
    The CHIANTI atomic database contains atomic energy levels, wavelengths, radiative transition probabilities, and collisional excitation data for a large number of ions of astrophysical interest. CHIANTI also includes a suite of IDL routines to calculate synthetic spectra and carry out plasma diagnostics. Version 5 has been released, which includes several new features, as well as new data for many ions. The new features in CHIANTI are as follows: the inclusion of ionization and recombination rates to individual excited levels as a means to populate atomic levels; data for Kα and Kβ emission from Fe ii to Fe xxiv; new data for high-energy configurations in Fe xvii to Fe xxiii; and a complete reassessment of level energies and line identifications in the X-ray range, multitemperature particle distributions, and photoexcitation from any user-defined radiation field. New data for ions already in the database, as well as data for ions not present in earlier versions of the database, are also included. Version 5 of CHIANTI represents a major improvement in the calculation of line emissivities and synthetic spectra in the X-ray range and expands and improves theoretical spectra calculations in all other wavelength ranges

    On achieving near-optimal “Anti-Bayesian” Order Statistics-Based classification fora asymmetric exponential distributions

    Get PDF
    This paper considers the use of Order Statistics (OS) in the theory of Pattern Recognition (PR). The pioneering work on using OS for classification was presented in [1] for the Uniform distribution, where it was shown that optimal PR can be achieved in a counter-intuitive manner, diametrically opposed to the Bayesian paradigm, i.e., by comparing the testing sample to a few samples distant from the mean - which is distinct from the optimal Bayesian paradigm. In [2], we showed that the results could be extended for a few symmetric distributions within the exponential family. In this paper, we attempt to extend these results significantly by considering asymmetric distributions within the exponential family, for some of which even the closed form expressions of the cumulative distribution functions are not available. These distributions include the Rayleigh, Gamma and certain Beta distributions. As in [1] and [2], the new scheme, referred to as Classification by Moments of Order Statistics (CMOS), attains an accuracy very close to the optimal Bayes’ bound, as has been shown both theoretically and by rigorous experimental testing

    EIS/Hinode observations of Doppler flow seen through the 40 arcsec wide slit

    Get PDF
    The Extreme ultraviolet Imaging Spectrometer (EIS) on board Hinode is the first solar telescope to obtain wide slit spectral images that can be used for detecting Doppler flows in transition region and coronal lines on the Sun and to relate them to their surrounding small scale dynamics. We select EIS lines covering the temperature range 6x10^4 K to 2x10^6 K that give spectrally pure images of the Sun with the 40 arcsec slit. In these images Doppler shifts are seen as horizontal brightenings. Inside the image it is difficult to distinguish shifts from horizontal structures but emission beyond the image edge can be unambiguously identified as a line shift in several lines separated from others on their blue or red side by more than the width of the spectrometer slit (40 pixels). In the blue wing of He II, we find a large number of events with properties (size and lifetime) similar to the well-studied explosive events seen in the ultraviolet spectral range. Comparison with X-Ray Telescope (XRT) images shows many Doppler shift events at the footpoints of small X-ray loops. The most spectacular event observed showed a strong blue shift in transition region and lower corona lines from a small X-ray spot that lasted less than 7 min. The emission appears to be near a cool coronal loop connecting an X-ray bright point to an adjacent region of quiet Sun. The width of the emission implies a line-of-sight velocity of 220 km/s. In addition, we show an example of an Fe XV shift with a velocity about 120 km/s, coming from what looks like a narrow loop leg connecting a small X-ray brightening to a larger region of X-ray emission.Comment: 12 pages, 8 figures, to be published in Solar Physic

    Compact UWB monopole for multilayer applications

    Full text link

    Direct amplification of nodD from community DNA reveals the genetic diversity of Rhizobium leguminosarum in soil

    Get PDF
    Sequences of nodD, a gene found only in rhizobia, were amplified from total community DNA isolated from a pasture soil. The polymerase chain reaction (PCR) primers used, Y5 and Y6, match nodD from Rhizobium leguminosarum biovar trifolii, R. leguminosarum biovar viciae and Sinorhizobium meliloti. The PCR product was cloned and yielded 68 clones that were identified by restriction pattern as derived from biovar trifolii [11 restriction fragment length polymorphism (RFLP) types] and 15 clones identified as viciae (seven RFLP types). These identifications were confirmed by sequencing. There were no clones related to S. meliloti nodD. For comparison, 122 strains were isolated from nodules of white clover (Trifolium repens) growing at the field site, and 134 from nodules on trap plants of T. repens inoculated with the soil. The nodule isolates were of four nodD RFLP types, with 77% being of a single type. All four of these patterns were also found among the clones from soil DNA, and the same type was the most abundant, although it made up only 34% of the trifolii-like clones. We conclude that clover selects specific genotypes from the available soil population, and that R. leguminosarum biovar trifolii was approximately five times more abundant than biovar viciae in this pasture soil, whereas S. meliloti was rare

    Rhizobacterial influence on healthy stand establishment of canola grown in Rhizoctonia solani infested fields of Saskatchewan

    Get PDF
    Non-Peer ReviewedPre-emergence seedling damping-off, seedling blight, and brown girdling root rot caused by R. solani are important diseases of canola/rape seed in western Canada. Annual yield losses in excess of 20-30% have been reported in several infected fields. Cultural control methods or resistant cultivars are currently unavailable for these diseases. Chemical fungicides have been developed for use to control the disease, but the success rate has been varied. However, the use of chemicals is becoming less acceptable from an environmental point of view. Several studies indicated that biological control using plant growth promoting rhizobacteria may also be effective in controlling R. solani. Field plots were established in Saskatoon, Regina and Melfort, SK, in 1990, 1991 and 1992 to evaluate the potential of rhizobacterial strains as seed treatments to increase the healthy stand of canola CV. Westar grown in R. solani infested field. The bacteria were formulated either in sterile peat or in a liquid carrier and applied to seed just before planting. Bacterized seed were mechanically planted in replicated field plots artificially infested with R. solani. Final healthy stand was measured 30 days after planting. Grain yields were determined by harvesting the plots. Seed bacterization significantly increased the final healthy stand compared to non-bacterized controls. Strains which increased stand showed in vitro antagonistic activity to not only R. solani but also other pathogens such as Pythium ultimum, Fusarium solani and F. oxysporum. Some of these strains induced root elongation of canola under laboratory conditions. Rhizosphere colonization, chemical compatibility and shelf-life of the important bacteria will be discussed

    Some general properties of the renormalized stress-energy tensor for static quantum states on (n+1)-dimensional spherically symmetric black holes

    Get PDF
    We study the renormalized stress-energy tensor (RSET) for static quantum states on (n+1)-dimensional, static, spherically symmetric black holes. By solving the conservation equations, we are able to write the stress-energy tensor in terms of a single unknown function of the radial co-ordinate, plus two arbitrary constants. Conditions for the stress-energy tensor to be regular at event horizons (including the extremal and ``ultra-extremal'' cases) are then derived using generalized Kruskal-like co-ordinates. These results should be useful for future calculations of the RSET for static quantum states on spherically symmetric black hole geometries in any number of space-time dimensions.Comment: 9 pages, no figures, RevTeX4, references added, accepted for publication in General Relativity and Gravitatio

    Physical Model for Plaque Action in the Tooth-Plaque-Saliva System

    Full text link
    A physical model describing the interrelationships of demineralization, remineralization, plaque thickness, glucose levels, and plaque enzymatic activity was presented. Selection of constants and variations of the parameters were kept in the range of possible in vivo situations. The results of calculations were discussed and correlated with the results of in vivo studies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66483/2/10.1177_00220345700490013001.pd

    Study of the three-dimensional shape and dynamics of coronal loops observed by Hinode/EIS

    Get PDF
    We study plasma flows along selected coronal loops in NOAA Active Region 10926, observed on 3 December 2006 with Hinode's EUV Imaging Spectrograph (EIS). From the shape of the loops traced on intensity images and the Doppler shifts measured along their length we compute their three-dimensional (3D) shape and plasma flow velocity using a simple geometrical model. This calculation was performed for loops visible in the Fe VIII 185 Ang., Fe X 184 Ang., Fe XII 195 Ang., Fe XIII 202 Ang., and Fe XV 284 Ang. spectral lines. In most cases the flow is unidirectional from one footpoint to the other but there are also cases of draining motions from the top of the loops to their footpoints. Our results indicate that the same loop may show different flow patterns when observed in different spectral lines, suggesting a dynamically complex rather than a monolithic structure. We have also carried out magnetic extrapolations in the linear force-free field approximation using SOHO/MDI magnetograms, aiming toward a first-order identification of extrapolated magnetic field lines corresponding to the reconstructed loops. In all cases, the best-fit extrapolated lines exhibit left-handed twist (alpha < 0), in agreement with the dominant twist of the region.Comment: 17 pages, 6 figure

    EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    Get PDF
    We analyze EUV spectra of the full solar disk from the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The observations were obtained via a fortuitous off-axis light path in the 140 -- 270 Angstrom passband. The general appearance of the spectra remained relatively stable over the two-year time period, but did show significant variations of up to 25% between two sets of Fe lines that show peak emission at 1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are caused by regions of hotter and cooler plasma rotating into, and out of, the field of view. The CHIANTI spectral code is employed to determine plasma temperatures, densities, and emission measures. A set of five isothermal plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes 85% of the total emission in the CHIPS passband. The standard Differential Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS spectra well as they over-predict emission at temperatures below log(T) = 6.0 and above log(T) = 6.3. The results are important for cross-calibrating TIMED, SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics Observatory.Comment: 27 Pages, 13 Figure
    corecore