194 research outputs found
Ocean observations in support of studies and forecasts of tropical and extratropical cyclones
© The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in
Domingues, R., Kuwano-Yoshida, A., Chardon-Maldonado, P., Todd, R. E., Halliwell, G., Kim, H., Lin, I., Sato, K., Narazaki, T., Shay, L. K., Miles, T., Glenn, S., Zhang, J. A., Jayne, S. R., Centurioni, L., Le Henaff, M., Foltz, G. R., Bringas, F., Ali, M. M., DiMarco, S. F., Hosoda, S., Fukuoka, T., LaCour, B., Mehra, A., Sanabia, E. R., Gyakum, J. R., Dong, J., Knaff, J. A., & Goni, G. Ocean observations in support of studies and forecasts of tropical and extratropical cyclones. Frontiers in Marine Science, 6, (2019): 446, doi:10.3389/fmars.2019.00446.Over the past decade, measurements from the climate-oriented ocean observing system have been key to advancing the understanding of extreme weather events that originate and intensify over the ocean, such as tropical cyclones (TCs) and extratropical bomb cyclones (ECs). In order to foster further advancements to predict and better understand these extreme weather events, a need for a dedicated observing system component specifically to support studies and forecasts of TCs and ECs has been identified, but such a system has not yet been implemented. New technologies, pilot networks, targeted deployments of instruments, and state-of-the art coupled numerical models have enabled advances in research and forecast capabilities and illustrate a potential framework for future development. Here, applications and key results made possible by the different ocean observing efforts in support of studies and forecasts of TCs and ECs, as well as recent advances in observing technologies and strategies are reviewed. Then a vision and specific recommendations for the next decade are discussed.This study was supported by the National Oceanic and Atmospheric Administration and JSPS KAKENHI (Grant Numbers: JP17K19093, JP16K12591, and JP16H01846)
The 2020 UV emitter roadmap
Solid state UV emitters have many advantages over conventional UV sources. The (Al,In,Ga)N material system is best suited to produce LEDs and laser diodes from 400 nm down to 210 nm—due to its large and tuneable direct band gap, n- and p-doping capability up to the largest bandgap material AlN and a growth and fabrication technology compatible with the current visible InGaN-based LED production. However AlGaN based UV-emitters still suffer from numerous challenges compared to their visible counterparts that become most obvious by consideration of their light output power, operation voltage and long term stability. Most of these challenges are related to the large bandgap of the materials. However, the development since the first realization of UV electroluminescence in the 1970s shows that an improvement in understanding and technology allows the performance of UV emitters to be pushed far beyond the current state. One example is the very recent realization of edge emitting laser diodes emitting in the UVC at 271.8 nm and in the UVB spectral range at 298 nm. This roadmap summarizes the current state of the art for the most important aspects of UV emitters, their challenges and provides an outlook for future developments
Storm-Track Response to SST Fronts in the Northwestern Pacific Region in an AGCM
The storm-track response to sea surface temperature (SST) fronts in the northwestern Pacific region is investigated using an atmospheric general circulation model with a 50-km horizontal resolution. The following two experiments are conducted: one with 0.25 degrees daily SST data (CNTL) and the other with smoothed SSTs over an area covering SST fronts associated with the Kuroshio, the Kuroshio Extension, the Oyashio, and the subpolar front (SMTHK). The storm track estimated from the local deepening rate of surface pressure (LDR) exhibits a prominent peak in this region in CNTL in January, whereas the storm-track peak weakens and moves eastward in SMTHK. Storm-track differences between CNTL and SMTHK are only found in explosive deepening events with LDR larger than 1 hPa h(-1). A diagnostic equation of LDR suggests that latent heat release associated with large-scale condensation contributes to the storm-track enhancement. The SST fronts also affect the large-scale atmospheric circulation over the northeastern Pacific Ocean. The jet stream in the upper troposphere tends to meander northward, which is associated with positive sea level pressure (SLP) anomalies in CNTL, whereas the jet stream flows zonally in SMTHK. A composite analysis for the northwestern Pacific SLP anomaly suggests that frequent explosive cyclone development in the northwestern Pacific in CNTL causes downstream positive SLP anomalies over the Gulf of Alaska. Cyclones in SMTHK developing over the northeastern Pacific enhance the moisture flux along the west coast of North America, increasing precipitation in that region
- …