153 research outputs found

    Stability of Mine Car Motion in Curves of Invariable and Variable Radii

    Get PDF
    We discuss our experiences adapting three recent algorithms for maximum common (connected) subgraph problems to exploit multi-core parallelism. These algorithms do not easily lend themselves to parallel search, as the search trees are extremely irregular, making balanced work distribution hard, and runtimes are very sensitive to value-ordering heuristic behaviour. Nonetheless, our results show that each algorithm can be parallelised successfully, with the threaded algorithms we create being clearly better than the sequential ones. We then look in more detail at the results, and discuss how speedups should be measured for this kind of algorithm. Because of the difficulty in quantifying an average speedup when so-called anomalous speedups (superlinear and sublinear) are common, we propose a new measure called aggregate speedup

    N-Terminal Arginines Modulate Plasma-Membrane Localization of Kv7.1/KCNE1 Channel Complexes

    Get PDF
    BACKGROUND AND OBJECTIVE: The slow delayed rectifier current (I(Ks)) is important for cardiac action potential termination. The underlying channel is composed of Kv7.1 α-subunits and KCNE1 β-subunits. While most evidence suggests a role of KCNE1 transmembrane domain and C-terminus for the interaction, the N-terminal KCNE1 polymorphism 38G is associated with reduced I(Ks) and atrial fibrillation (a human arrhythmia). Structure-function relationship of the KCNE1 N-terminus for I(Ks) modulation is poorly understood and was subject of this study. METHODS: We studied N-terminal KCNE1 constructs disrupting structurally important positively charged amino-acids (arginines) at positions 32, 33, 36 as well as KCNE1 constructs that modify position 38 including an N-terminal truncation mutation. Experimental procedures included molecular cloning, patch-clamp recording, protein biochemistry, real-time-PCR and confocal microscopy. RESULTS: All KCNE1 constructs physically interacted with Kv7.1. I(Ks) resulting from co-expression of Kv7.1 with non-atrial fibrillation '38S' was greater than with any other construct. Ionic currents resulting from co-transfection of a KCNE1 mutant with arginine substitutions ('38G-3xA') were comparable to currents evoked from cells transfected with an N-terminally truncated KCNE1-construct ('Δ1-38'). Western-blots from plasma-membrane preparations and confocal images consistently showed a greater amount of Kv7.1 protein at the plasma-membrane in cells co-transfected with the non-atrial fibrillation KCNE1-38S than with any other construct. CONCLUSIONS: The results of our study indicate that N-terminal arginines in positions 32, 33, 36 of KCNE1 are important for reconstitution of I(Ks). Furthermore, our results hint towards a role of these N-terminal amino-acids in membrane representation of the delayed rectifier channel complex

    Mutations in the potassium channel subunit KCNE1 are associated with early-onset familial atrial fibrillation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Atrial fibrillation (AF) is the most common arrhythmia. The potassium current I<sub>Ks </sub>is essential for cardiac repolarization. Gain-of-function mutations in K<sub>V</sub>7.1, the pore-forming α-subunit of the I<sub>Ks </sub>channel, have been associated with AF. We hypothesized that early-onset lone AF is associated with mutations in the I<sub>Ks </sub>channel regulatory subunit KCNE1.</p> <p>Methods</p> <p>In 209 unrelated early-onset lone AF patients (< 40 years) the entire coding sequence of <it>KCNE1 </it>was bidirectionally sequenced. We analyzed the identified KCNE1 mutants electrophysiologically in heterologous expression systems.</p> <p>Results</p> <p>Two non-synonymous mutations G25V and G60D were found in <it>KCNE1 </it>that were not present in the control group (n = 432 alleles) and that have not previously been reported in any publicly available databases or in the exom variant server holding exom data from more than 10.000 alleles. Proband 1 (female, age 45, G25V) had onset of paroxysmal AF at the age of 39 years. Proband 2 (G60D) was diagnosed with lone AF at the age of 33 years. The patient has inherited the mutation from his mother, who also has AF. Both probands had no mutations in genes previously associated with AF. In heterologous expression systems, both mutants showed significant gain-of-function for I<sub>Ks </sub>both with respect to steady-state current levels, kinetic parameters, and heart rate-dependent modulation.</p> <p>Conclusions</p> <p>Mutations in K<sub>V</sub>7.1 leading to gain-of-function of I<sub>Ks </sub>current have previously been described in lone AF, yet this is the first time a mutation in the beta-subunit <it>KCNE1 </it>is associated with the disease. This finding further supports the hypothesis that increased potassium current enhances AF susceptibility.</p

    Global DNA Hypomethylation in Peripheral Blood Leukocytes as a Biomarker for Cancer Risk: A Meta-Analysis

    Get PDF
    BACKGROUND: Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. METHODS: We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. RESULTS: The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2): 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2): 0%) and LINE-1 used same target sequence (p = 0.097, I(2): 49%), whereas considerable variance remained in LINE-1 (p<0.001, I(2): 80%) and bladder cancer studies (p = 0.016, I(2): 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28-1.70)]. CONCLUSIONS: Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk

    Epigenetic memory in induced pluripotent stem cells

    Get PDF
    Somatic cell nuclear transfer and transcription-factor-based reprogramming revert adult cells to an embryonic state, and yield pluripotent stem cells that can generate all tissues. Through different mechanisms and kinetics, these two reprogramming methods reset genomic methylation, an epigenetic modification of DNA that influences gene expression, leading us to hypothesize that the resulting pluripotent stem cells might have different properties. Here we observe that low-passage induced pluripotent stem cells (iPSCs) derived by factor-based reprogramming of adult murine tissues harbour residual DNA methylation signatures characteristic of their somatic tissue of origin, which favours their differentiation along lineages related to the donor cell, while restricting alternative cell fates. Such an ‘epigenetic memory’ of the donor tissue could be reset by differentiation and serial reprogramming, or by treatment of iPSCs with chromatin-modifying drugs. In contrast, the differentiation and methylation of nuclear-transfer-derived pluripotent stem cells were more similar to classical embryonic stem cells than were iPSCs. Our data indicate that nuclear transfer is more effective at establishing the ground state of pluripotency than factor-based reprogramming, which can leave an epigenetic memory of the tissue of origin that may influence efforts at directed differentiation for applications in disease modelling or treatment.National Institutes of Health (U.S.) (NIH grant RO1-DK70055)National Institutes of Health (U.S.) (NIH Grant RO1-DK59279)National Institutes of Health (U.S.) (American Recovery and Reinvestment Act (RC2-HL102815))National Institutes of Health (U.S.) (NIH (K99HL093212-01))Cooley’s Anemia FoundationNational Institutes of Health (U.S.) (NIH LLS (3567-07))National Institutes of Health (U.S.) (NIH grant R37CA054358)National Institutes of Health (U.S.) (NIH grant P50HG003233)National Institutes of Health (U.S.) (NIH grant R01AI047457)National Institutes of Health (U.S.) (NIH Grant R01AI047458)National Institutes of Health (U.S.) (CA86065)National Institutes of Health (U.S.) (HL099999)Thomas and Stacey Siebel FoundationCalifornia Institute for Regenerative Medicine (Fellowship T1-00001

    Methylome Analysis and Epigenetic Changes Associated with Menarcheal Age

    Get PDF
    CAD received funding from EU-Europe aid grant CRIS 2009/223–507.The EPIC cohort is supported by the Europe Against Cancer Program of the European Commission (SANCO). The individual centres also received funding from: Denmark (Danish Cancer Society); France (Ligue centre le Cancer, Institut Gustave Roussy, Mutuelle Ge´ne´rale de l’Education Nationale, and Institut National de la Sante´ et de la Recherche Me´dicale (INSERM)); Greece (Hellenic Ministry of Health, the Stavros Niarchos Foundation and the Hellenic Health Foundation); Germany (German Cancer Aid, German Cancer Research Center, and Federal Ministry of Education and Research (Grant 01-EA-9401)); Italy (Italian Association for Research on Cancer and the National Research Council); The Netherlands (Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, and Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF)); Spain (Health Research Fund (FIS) of the Spanish Ministry of Health (Exp 96/0032) and the participating regional governments and institutions); Sweden (Swedish Cancer Society, Swedish Scientific Council, and Regional Government of Skane); and the United Kingdom (Cancer Research UK and Medical Research Council UK and Breast Cancer Campaign). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    The Molecular Signature Underlying the Thymic Migration and Maturation of TCRαβ+CD4+CD8- Thymocytes

    Get PDF
    BACKGROUND: After positive selection, the newly generated single positive (SP) thymocytes migrate to the thymic medulla, where they undergo negative selection to eliminate autoreactive T cells and functional maturation to acquire immune competence and egress capability. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the genetic program underlying this process, we analyzed changes in gene expression in four subsets of mouse TCRαβ(+)CD4(+)CD8(-) thymocytes (SP1 to SP4) representative of sequential stages in a previously defined differentiation program. A genetic signature of the migration of thymocytes was thus revealed. CCR7 and PlexinD1 are believed to be important for the medullary positioning of SP thymocytes. Intriguingly, their expression remains at low levels in the newly generated thymocytes, suggesting that the cortex-medulla migration may not occur until the SP2 stage. SP2 and SP3 cells gradually up-regulate transcripts involved in T cell functions and the Foxo1-KLF2-S1P(1) axis, but a number of immune function-associated genes are not highly expressed until cells reach the SP4 stage. Consistent with their critical role in thymic emigration, the expression of S1P(1) and CD62L are much enhanced in SP4 cells. CONCLUSIONS: These results support at the molecular level that single positive thymocytes undergo a differentiation program and further demonstrate that SP4 is the stage at which thymocytes acquire the immunocompetence and the capability of emigration from the thymus

    Novel Echocardiographic Biomarkers in the Management of Atrial Fibrillation

    Get PDF
    Purpose of Review: Atrial fibrillation (AF) is the most common arrhythmia in adults. The number of patients with AF is anticipated to increase annually, mainly due to the aging population alongside improved arrhythmia detection. AF is associated with a significantly elevated risk of hospitalization, stroke, thromboembolism, heart failure, and all-cause mortality. Echocardiography is one of the key components of routine assessment and management of AF. Therefore, the aim of this review is to briefly summarize current knowledge on “novel” echocardiographic parameters that may be of value in the management of AF patients. Recent Findings: Novel echocardiographic biomarkers and their clinical application related to the management of AF have been taken into consideration. Both standard parameters such as atrial size and volume but also novels like atrial strain and tissue Doppler techniques have been analyzed. Summary: A number of novel echocardiographic parameters have been proven to enable early detection of left atrial dysfunction along with increased diagnosis accuracy. This concerns particularly experienced echocardiographers. Hence, these techniques might improve the prediction of stroke and thromboembolic events among AF patients and need to be further developed and disseminated. Nonetheless, even the standard imaging parameters could be of significant value and should not be discontinued in everyday clinical practice. © 2019, The Author(s)

    Retroviral matrix and lipids, the intimate interaction

    Get PDF
    Retroviruses are enveloped viruses that assemble on the inner leaflet of cellular membranes. Improving biophysical techniques has recently unveiled many molecular aspects of the interaction between the retroviral structural protein Gag and the cellular membrane lipids. This interaction is driven by the N-terminal matrix domain of the protein, which probably undergoes important structural modifications during this process, and could induce membrane lipid distribution changes as well. This review aims at describing the molecular events occurring during MA-membrane interaction, and pointing out their consequences in terms of viral assembly. The striking conservation of the matrix membrane binding mode among retroviruses indicates that this particular step is most probably a relevant target for antiviral research
    corecore