806 research outputs found

    Hypothermia increases aquaporin 4 (AQP4) plasma membrane abundance in human primary cortical astrocytes via a calcium/transient receptor potential vanilloid 4 (TRPV4)- and calmodulin-mediated mechanism

    Get PDF
    Human aquaporin 4 (AQP4) is the primary water channel protein in brain astrocytes. Hypothermia is known to cause astrocyte swelling in culture, but the precise role of AQP4 in this process is unknown. Primary human cortical astrocytes were cultured under hypothermic (32 °C) or normothermic (37 °C) conditions. AQP4 transcript, total protein and surface-localized protein were quantified using RT-qPCR, sandwich ELISA with whole cell lysates or cell surface biotinylation, followed by ELISA analysis of the surface-localized protein, respectively. Four-hour mild hypothermic treatment increased the surface localization of AQP4 in human astrocytes to 155 ± 4% of normothermic controls, despite no change in total protein expression levels. The hypothermia-mediated increase in AQP4 surface abundance on human astrocytes was blocked using either calmodulin antagonist (trifluoperazine, TFP); TRPV4 antagonist, HC-067047 or calcium chelation using EGTA-AM. The TRPV4 agonist (GSK1016790A) mimicked the effect of hypothermia compared with untreated normothermic astrocytes. Hypothermia led to an increase in surface localization of AQP4 in human astrocytes through a mechanism likely dependent on the TRPV4 calcium channel and calmodulin activation. Understanding the effects of hypothermia on astrocytic AQP4 cell surface expression may help develop new treatments for brain swelling based on an in-depth mechanistic understanding of AQP4 translocation

    Endotoxin-activated microglia injure brain derived endothelial cells via NF-κB, JAK-STAT and JNK stress kinase pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously showed that microglia damage blood brain barrier (BBB) components following ischemic brain insults, but the underlying mechanism(s) is/are not well known. Recent work has established the contribution of toll-like receptor 4 (TLR4) activation to several brain pathologies including ischemia, neurodegeneration and sepsis. The present study established the requirement of microglia for lipopolysaccharide (LPS) mediated endothelial cell death, and explored pathways involved in this toxicity. LPS is a classic TLR4 agonist, and is used here to model aspects of brain conditions where TLR4 stimulation occurs.</p> <p>Methods/Results</p> <p>In monocultures, LPS induced death in microglia, but not brain derived endothelial cells (EC). However, LPS increased EC death when cocultured with microglia. LPS led to nitric oxide (NO) and inducible NO synthase (iNOS) induction in microglia, but not in EC. Inhibiting microglial activation by blocking iNOS and other generators of NO or blocking reactive oxygen species (ROS) also prevented injury in these cocultures. To assess the signaling pathway(s) involved, inhibitors of several downstream TLR-4 activated pathways were studied. Inhibitors of NF-κB, JAK-STAT and JNK/SAPK decreased microglial activation and prevented cell death, although the effect of blocking JNK/SAPK was rather modest. Inhibitors of PI3K, ERK, and p38 MAPK had no effect.</p> <p>Conclusions</p> <p>We show that <it>LPS-activated microglia promote BBB disruption </it>through injury to endothelial cells, and the specific blockade of JAK-STAT, NF-κB may prove to be especially useful anti-inflammatory strategies to confer cerebrovascular protection.</p

    Therapeutic Hypothermia after Cardiac Arrest: Experience at an Academically Affiliated Community-Based Veterans Affairs Medical Center

    Get PDF
    At laboratory and clinical levels, therapeutic hypothermia has been shown to improve neurologic outcomes and mortality following cardiac arrest. We reviewed each cardiac arrest in our community-based Veterans Affairs Medical Center over a three-year period. The majority of cases were in-hospital arrests associated with initial pulseless electrical activity or asystole. Of a total of 100 patients suffering 118 cardiac arrests, 29 arrests involved comatose survivors, with eight patients completing therapeutic cooling. Cerebral performance category scores at discharge and six months were significantly better in the cooled cohort versus the noncooled cohort, and, in every case except for one, cooling was offered for appropriate reasons. Mean time to initiation of cooling protocol was 3.7 hours and mean time to goal temperature of 33°C was 8.8 hours, and few complications clearly related to cooling were noted in our case series. While in-patient hospital mortality of cardiac arrest was high at 65% mortality during hospital admission, therapeutic hypothermia was safe and feasible at our center. Our cooling times and incidence of favorable outcomes are comparable to previously published reports. This study demonstrates the feasibility of implementing, a cooling protocol a community setting, and the role of neurologists in ensuring effective hospital-wide implementation

    Direct protection of cultured neurons from ischemia-like injury by minocycline

    Get PDF
    Minocycline, a tetracycline antibiotic, is now known to protect cells via an anti-inflammatory mechanism. We further explored this effect using an in vitro model of ischemia-like injury to neurons. Coculturing neurons with microglia, the brain's resident immune cell, modestly increased cell death due to oxygen and glucose deprivation (OGD), compared to neurons alone. Treatment of cocultures with minocycline decreased cell death to a level significantly lower than that of neurons alone. Treatment of cocultures with minocycline or inhibitors of various immune mediators, also led to decreased cell death. Importantly, treatment of neuron cultures without added microglia with these same inhibitors of tissue plasminogen activator, matrix metalloproteinases, TNF-alpha and inducible nitric oxide synthase as well as minocycline also led to decreased cell death. Thus, anti-inflammatory treatments appear to be directly protective of neurons from in vitro ischemia

    The X-ray structure of human calbindin-D28K: an improved model

    Get PDF
    Calbindin-D28K is a widely expressed calcium-buffering cytoplasmic protein that is involved in many physiological processes. It has been shown to interact with other proteins, suggesting a role as a calcium sensor. Many of the targets of calbindin-D28K are of therapeutic interest: for example, inositol monophosphatase, the putative target of lithium therapy in bipolar disorder. Presented here is the first crystal structure of human calbindin-D28K. There are significant deviations in the tertiary structure when compared with the NMR structure of rat calbindin-D28K (PDB entry 2g9b), despite 98% sequence identity. Smallangle X-ray scattering (SAXS) indicates that the crystal structure better predicts the properties of calbindin-D28K in solution compared with the NMR structure. Here, the first direct visualization of the calcium-binding properties of calbindinD28K is presented. Four of the six EF-hands that make up the secondary structure of the protein contain a calcium-binding site. Two distinct conformations of the N-terminal EF-hand calcium-binding site were identified using long-wavelength calcium single-wavelength anomalous dispersion (SAD). This flexible region has previously been recognized as a protein–protein interaction interface. SAXS data collected in both the presence and absence of calcium indicate that there are no large structural differences in the globular structure of calbindin-D28K between the calcium-loaded and unloaded proteins

    The 70 kDa heat shock protein protects against experimental traumatic brain injury

    Full text link
    Traumatic brain injury (TBI) causes disruption of the blood brain barrier (BBB) leading to hemorrhage which can complicate an already catastrophic illness. Matrix metalloproteinases (MMPs) involved in the breakdown of the extracellular matrix may lead to brain hemorrhage. We explore the contribution of the 70 kDa heat shock protein (Hsp70) to outcome and brain hemorrhage in a model of TBI. Male, wildtype (Wt), Hsp70 knockout (Ko) and transgenic (Tg) mice were subjected to TBI using controlled cortical impact (CCI). Motor function, brain hemorrhage and lesion size were assessed at 3, 7 and 14 days. Brains were evaluated for the effects of Hsp70 on MMPs. In Hsp70 Tg mice, CCI led to smaller brain lesions, decreased hemorrhage and reduced expression and activation of MMPs compared to Wt. CCI also significantly decreased right-biased swings and corner turns in the Hsp70 Tg mice. Conversely, Hsp70 Ko mice had significantly increased lesion size, worsened brain hemorrhage and increased expression and activation of MMPs with worsened behavioral outcomes compared to Wt. Hsp70 is protective in experimental TBI. To our knowledge, this is the direct demonstration of brain protection by Hsp70 in a TBI model. Our data demonstrate a new mechanism linking TBI-induced hemorrhage and neuronal injury to the suppression of MMPs by Hsp70, and support the development of Hsp70 enhancing strategies for the treatment of TBI

    Hypothermic Preconditioning of Human Cortical Neurons Requires Proteostatic Priming

    Get PDF
    AbstractHypothermia is potently neuroprotective but poor mechanistic understanding has restricted its clinical use. Rodent studies indicate that hypothermia can elicit preconditioning, wherein a subtoxic cellular stress confers resistance to an otherwise lethal injury. The molecular basis of this preconditioning remains obscure. Here we explore molecular effects of cooling using functional cortical neurons differentiated from human pluripotent stem cells (hCNs). Mild-to-moderate hypothermia (28–32°C) induces cold-shock protein expression and mild endoplasmic reticulum (ER) stress in hCNs, with full activation of the unfolded protein response (UPR). Chemical block of a principal UPR pathway mitigates the protective effect of cooling against oxidative stress, whilst pre-cooling neurons abrogates the toxic injury produced by the ER stressor tunicamycin. Cold-stress thus preconditions neurons by upregulating adaptive chaperone-driven pathways of the UPR in a manner that precipitates ER-hormesis. Our findings establish a novel arm of neurocryobiology that could reveal multiple therapeutic targets for acute and chronic neuronal injury
    corecore